
Playbook
CMS

Messaging
via

ActiveITS
Databus

Andres Chavez
Andres.Chavez@dot.ca.gov
DRISI
D3 Central Systems & TMC Manager
Caltrans

Jared Sun
Jared.Sun@dot.ca.gov
District 3
Caltrans

Andres Chavez, P.E.
Senior

Transportation
Electrical Engineer

Specialist

Experience

• 22 Years Network Engineer in Private Sector

• 7 Years Caltrans D3 - DRISI

Fun Facts:

• Goal, hike all 63 national parks, 1/3 done.

• I’m a recovering health-nut.

• Wind therapy is the best therapy.

2

About Me

• Jared Sun, P.E.

• Caltrans District 3

• Formerly at CA Dept. of
Water Resources (DWR)

• Professional Interests: web
development, security, data
science, AI/ML

3

The
Shredder!

Glossary
• ActiveITS – Southwest Research Institute’s ATMS.
• API: Application Programming Interface
• ATMS – Advanced Transportation Management System.
• CMS – Changeable Message Sign.
• EMS – Extinguishable Message Sign.
• GoldenEye – Caltrans’s version of ActiveITS.
• HAR – Highway Advisory Radio.
• ICM – Intelligent Corridor Management.
• JavaScript – Object oriented programming language.
• JSON – JavaScript Object Notation.
• JWT: JSON Web Token
• Sun Guide – Florida DOT’s version of ActiveITS.
• XML – Extensible Markup Language.

4

Agenda

5

The problem.

The working solution.

Quick demo.

Nuts and bolts.

What’s next.

The Problem Statement

CMS Chain Control Messaging
is a manual process that
requires constant message
updates as weather condition
change. These changes can
happen faster than the time it
takes an operator to update
CMS, HAR’s and Event Logging
System.

6

CMS Message Requirements

Correctness!

Consistent (over time).

Deployed quickly.

Updated/modified rapidly.

Removed in a timely manner.

US50 EB & SR89
CC Locations

8

9

US50 WB & SR89
CC Locations

CMS Locations

10

Message Sources
11

Message Sources

Message
Sources

–
Split Notes

What Could Go Wrong?

14

Omissions.

Stale data.

Lack of communication (shift change).

Inconsistencies.

Mixed restriction messaging.

The Solution - Gather Data

Ground
roots

innovation.

Pull info
from..

• Binders
• Leaflets
• Personal

notebooks
• Operators’

brains

Put into DB
(MS Access)
for self use.

Standardize
And

Populate
Playbook

• Identify Variables
• Route
• Sub Route (optional)
• Restriction

• R1; Chains or snow tires
• R2; Chains or 4x4/AWD

• Begin Restriction
• End Restriction
• Split (optional)

First Pass
(US50 and SR89)
483 Permutation

17

Streamline/Automate

Original goal – Gather info into searchable webpage. But what if…

Pushed messages to CMS’s?

Activated HAR?

Activated EMS?

(Streamlined E-Pages?)

Match made in heaven, enter ActiveITS from SwRI

Databus XML API.

Automatic logging.

Chain Control (First Release) Input

Chain Control Output

Why Stop There?

•I80
•I80 EB
•I80 WB
•CA 20
•CA 28
•CA 267

Add other
chain-controlled

routes

•MIN; R2 + Minimum requirements for big rigs.
•MAX; R2 + Maximum requirements for big rigs.

Add other chain
control

restrictions

Permutation count more than doubled.

Don’t Let A Catastrophe Go To Waste.

Add Special (Recurring) Events

(Snow) Avalanche

(Mud) Slides

Storm Warning

Floods

Augmented
Playbook

Parameters

• New Variables
• Action
• Route
• Sub Route

• Route Dependent
• Restriction

• 46 total
• Action Dependent

• Begin Restriction
• End Restriction
• Split

• Route Dependent

Permutation count ~2500.

Restriction Tree
(46 and counting)

24

Demo

25

Chain Control System:
The Nuts and Bolts

Architecture Overview

Component 1: Security Server
• Apache HTTP Server: the tried-and-true server for web applications

• Extensible with modules
• Keycloak: a free, open-source Identity and Access Management solution

• allows users to log in with a single-sign-on account and have specific access
levels based on their assigned roles.

Apache HTTP Server

• Serves static files as fundamental functionality
• Can execute dynamic scripts via Common Gateway

Interface (CGI) module mod_cgi
• A little slow and “old-school” (popular in 1990s)

• Can reverse-proxy to origin application servers via
mod_proxy

• Used for load balancing and security

• Well-known and reliable, though it was dethroned
by Nginx in 2022 as most used web server

HTTP Fundamentals

• HTTP = Hypertext Transfer Protocol
• Serves as the most common “glue” between clients

and servers, as well as servers to other servers
• Client sends a request method to indicate the

desired action.
• GET (request a resource)
• POST (submit data, often as a new resource)
• DELETE (delete the specified resource)
• PUT (modify the resource)

• Optionally contains cookies, storing session
information about the user

HTTPS and TLS/SSL

• HTTP is unencrypted by default
• Any passwords or confidential info sent over HTTP can

be intercepted and read in plain text

• HTTPS = HTTP + Transport Layer Security (TLS),
also formerly known as Secure Sockets Layer (SSL)

• In HTTPS, client and server perform a “handshake”
routine to see if the client can trust the server and
decide on how to encrypt their subsequent
communication

TLS 1.3 Handshake for HTTPS

Security Part 2: Identity and
Access Management (IAM)

• Who can perform what actions on which resources
and when?

• Use OAuth 2.0 for authentication and authorization
• Internet Standard RFC 6749

• Use OpenID Connect (OIDC) for identity
• OIDC is a superset of Oauth 2.0

Keycloak

• Performs Identity and Access Management
• Allows single-sign-on
• Open source, self-hosted software under

stewardship of Red Hat
• Assigns tokens to users over HTTP cookies with

their user profile information, roles, and how long
they have access

• Verifies cryptographic signatures in tokens to make
sure clients have correct access

Authorization Flow

JSON Web Token (JWT)

Decode

Security Server Summary

• Client uses TLS on port 443 to start an encrypted HTTPS
connection to Apache reverse-proxy server

• Keycloak works with Apache server to identify the user
and their access level

Component 2: Application Server

The application server:
1. Serves public client files (HTML, JS, CSS) to the

client
2. Stores and sends data files in JSON format
3. Allows remote procedure calls via CGI scripts

Public Files (HTML, CSS, JS)

1. Client requests index.html from the server and
receives it

2. Client’s browser parses index.html, which lists various
CSS and JavaScript resources it would like to fetch
1. `fetch` being a modern JS replacement of

XMLHTTPRequest / AJAX supported by all browsers
3. Client’s browser fetches resources while parsing the

rest of the page
4. JavaScript executes startup code in the browser when

the browser has finished building the body of the
page
1. This includes fetching the Playbook (JSON) and History

(JSON)

Application Server Data Files

• Playbook (JSON): a large list of objects with
permutations of possible selections and the
corresponding sign messages that will be pushed

• History (JSON): list of actions taken in the GUI, i.e.
who submitted which messages and what time

• These files can be requested but not modified by
the user

• Due to their size, they are compressed with GZIP by
Apache before sending to the client

CGI Scripts: Definition

• CGI = Common Gateway Interface
• Created in the early 1990s to allow web pages to be

interactive
• CGI allows a server to construct an HTTP response

based on dynamic data constructed or fetched on
the server

• CGI also allows “remote procedure calls” – allowing
the client to execute commands on another server
without knowing the details of how the command
is implemented

CGI Scripts: Application

• CGI serves as the gateway between Apache HTTP
server and a Python runtime

• While Apache can only serve documents by default,
we can extend it with the mod_cgi module to allow
it to execute anything with Python.

• Python scripts establish connections with
GoldenEye’s Databus and Database in order to find
real-time information about CMS status and push
new messages to CMSs, EMSs, and HARs.

CGI Scripts: Limitations

• Apache server must fork and execute a new
process and load all dependencies on every call

• Overtaken in popularity in the late 90s / early
2000s by PHP and later by web frameworks (Ruby
on Rails, Node.js, Next.js, etc.)

• Imperative and low-level: easy to make a mistake
that can create a security vulnerability

Application Server Summary

1. Apache server gives the client the necessary files
to build the interface in the web browser

2. Client’s browser then executes `fetch`
3. Allows remote procedure calls via CGI scripts

Component 3: Data Bus

• The Data Bus is our main API gateway to
accomplish all field element management

• Communicates over its own protocol on TCP via
XML documents

GoldenEye Data Bus

• Databus: a system that transfers data between
components inside a system

• The Message Arbitration Subsystem (MAS) must
communicate with the Dynamic Message Sign
Subsystem (DMS), Beacon Management Subsystem
(BMS), and HAR Subsystem (HAR) via the databus

• We will also use the databus to communicate with
the Message Arbitration Subsystem via our CGI
scripts

Data Bus Full Diagram

Data Bus Protocol Specifications

• All messages must first
include a 32-bit integer for
Transmitted Size, then 32-bit
integer for Decompressed
Size, then the request in XML
format

• Integers and bitmaps in big
endian format

Data Bus XML

Data Bus XML Details

• refId: unique identifier sent by the client
• icdVersion: “Interface Control Document” version, aka.

API version, which is still 1.0 as of 2023
• username: the username of the operator sending the

message. We enforce that this username is the same as
their Keycloak username

• securityToken: a required token retrieved by a simple
XML exchange providing a username and password for
a token

• Other specifications are provided in the SunGuide
General Interface Control Document

Data Bus Control Pseudocode

Data Bus Extensibility

• With the ability to connect with and communicate
with the databus, we can control all elements,
including EMS and HARs

• HARs may be sent messages using the same
command via MAS

• EMS’s are similar, but we have complications to
resolve first

Implementing EMS: Problem

• In order to turn our Extinguishable Message Signs
(EMS) on and off, we generally use three different
devices for internet remote relay control:

• Ambery IP-P3
• WebRelay Single
• iBoot G2(+)

• GoldenEye only has a driver for WebRelay

EMS Remote Relay Devices

Implementing EMS: Solution

• Solution: Add an abstraction layer to translate all
Ambery and iBoot messages and commands into
equivalent WebRelay messages and commands

• We only need to implement “Get Status”, “Turn
On”, and “Turn Off”

• This sits in between GoldenEye and EMS’s, listening
for all communications between GoldenEye and all
EMS Ambery, iBoot, and WebRelay devices

• We can now talk with all our EMS’s via GoldenEye’s
databus!

EMS Abstraction Layer
Implementation Details
• Accomplished using Python asyncio to listen on 50+

ports at the same time and accomplish
asynchronous, non-blocking communication

• All device “clients” derive from an abstract base
class, ensuring that from they all implement “Get
Status”, “Turn On”, and “Turn Off”

• Copied WebRelay’s `status.xml` response file to
pretend to be a WebRelay for all devices

Extra: HAR Communication

• We use MH Corbin Platinum to control our HARs
• SIM (Software Interface Module) allows GoldenEye

to communicate with Platinum via a shared file
directory

• A command to HAR 37 is sent by placing a
COMMAND37.txt file in the shared directory to be read
and processed by Platinum

• After configuration, GoldenEye handles
communication with Platinum, and our CGI scripts
communicate with GoldenEye via MAS subsystem

Extra: SMTP

• When we send chain control messages, we also send an
executive page (epage) to the relevant notifying parties

• CGI scripts read what command is being sent, and
generates a message such as:

• @1327 R2 SLYPARK TO FRESH POND // R2 FREDS TO MEYERS
- TKS MIN

• CGI scripts then send this message to the notification
list to Caltrans SMTP server over port 25 to send out via
email.

• For text messages, carriers provide gateways such as:
@vtext.com, @txt.att.net, @tmomail.net, etc. to
forward emails as texts

Putting it All Together

Putting it All Together: Part 1

1. Client requests /ChainControl/index.html from our
security server over HTTPS

2. Security server first redirects the client to login to
Keycloak

3. Client logs in, and the security server verifies that the
client user has permission to access the page. Client
receives a token as proof of identity.

4. Sec. server requests /ChainControl/index.html from
the App. Server.

5. Sec. Server gets index.html and relays it to the client.

Putting It All Together: Part 2

6. Client’s browser parses index.html and starts
requesting other public files like CSS and JS files.
Those get sent by App. and Sec. servers.

7. Client’s browser starts executing JavaScript to
fetch Playbook and History data. Those get sent
as Gzipped JSON, which the client decompresses
and parses.

8. Client’s web application is now fully ready for
commands.

Putting It All Together: Part 3

9. Client selects a Chain Control action and chooses
messages to send to 10 signs.

10. Client JS executes a fetch to a CGI script with a
command to set these sign messages. The body
of this fetch HTTP request contains username,
timestamp, action, and sign messages.

11. CGI script logs into the Databus using the user’s
credentials and translates the command into the
Databus’s API format.

12. Databus receives the command and executes it.

Putting It All Together: Part 4

13. Databus responds to CGI script saying that the
command has executed successfully.

14. CGI script sends an email to the Caltrans SMTP
server with an epage message to send to
notifying parties.

15. CGI script responds to the Client JS with a 200 OK
status.

16. Client user sees in their browser that the
command was successful.

Next Steps -
ICM

• Similar input parameters
• Route.
• Num of lanes

Shoulder, 1L, 2L, 3+L, Full Closure.
• Restriction

Unknown, 0 miles, 1 mile, 2 miles, 3+ miles.
• Begin Restriction
• End Restriction

64

ICM Playbook

65

Benefits

Increased accuracy.

Consistent messaging.

Quick message deployment.

Quick message update.

Quick message removal.

Issues
Encountered

• Synchronization issues (WYSI-N-WYG).
• Queued messages get pushed after incident

has cleared.

• Operators no longer operate.
• Smartphone analogy.

• HAR integration.

• ActiveITS only supports WebRelay.

• Operators confused about interface, needed
additional training.

• Requests for corner cases had to be dropped.

67

Future Improvements?

• Frontend became too cluttered and hard for users
to understand

• Backend code was hard to maintain and hard to
debug for those not used to CGI Scripts and parsing
Apache or system logs

Proposed Solutions and Ideas:

• Next.js server to replace application server
• Everything is JS, which is easy for new hires or student

assistants to understand and write
• Easier to set up development and testing environments

compared to installing a local Apache server
• React.js allows much easier control over complicated

front-end interfaces

• Connections to TMC Activity Logging server via
MySQL connection?

	Playbook CMS Messaging �via�ActiveITS Databus
	Andres Chavez, P.E.�Senior Transportation Electrical Engineer Specialist
	About Me
	Glossary
	Agenda
	The Problem Statement
	CMS Message Requirements
	US50 EB & SR89 �CC Locations
	US50 WB & SR89 �CC Locations
	CMS Locations
	Message Sources
	Message Sources
	Message Sources �– �Split Notes
	What Could Go Wrong?
	The Solution - Gather Data
	Standardize And Populate Playbook
	Slide Number 17
	Streamline/Automate
	Chain Control (First Release) Input
	Chain Control Output
	Why Stop There?
	Don’t Let A Catastrophe Go To Waste.
	Augmented Playbook�Parameters
	Restriction Tree�(46 and counting)
	Demo
	Chain Control System:�The Nuts and Bolts
	Architecture Overview
	Component 1: Security Server
	Apache HTTP Server
	HTTP Fundamentals
	HTTPS and TLS/SSL
	TLS 1.3 Handshake for HTTPS
	Security Part 2: Identity and Access Management (IAM)
	Keycloak
	Authorization Flow
	JSON Web Token (JWT)
	Security Server Summary
	Component 2: Application Server
	Public Files (HTML, CSS, JS)
	Application Server Data Files
	CGI Scripts: Definition
	CGI Scripts: Application
	CGI Scripts: Limitations
	Application Server Summary
	Component 3: Data Bus
	GoldenEye Data Bus
	Data Bus Full Diagram
	Data Bus Protocol Specifications
	Data Bus XML
	Data Bus XML Details
	Data Bus Control Pseudocode
	Data Bus Extensibility
	Implementing EMS: Problem
	EMS Remote Relay Devices
	Implementing EMS: Solution
	EMS Abstraction Layer Implementation Details
	Extra: HAR Communication
	Extra: SMTP
	Putting it All Together
	Putting it All Together: Part 1
	Putting It All Together: Part 2
	Putting It All Together: Part 3
	Putting It All Together: Part 4
	Next Steps - ICM
	ICM Playbook
	Benefits	
	Issues Encountered
	Future Improvements?
	Proposed Solutions and Ideas:

