

Broadband Communications Design Strategies & Considerations for ITS Applications in Caltrans District 2

Sac Canyon Wireless Expansion

California Department of Transportation, District 2 Kenneth Shipley, ITS Engineer Kenneth.Shipley@dot.ca.gov

2023 Western States Rural Transportation Technology Implementers Forum

Acronyms

- ADA Americans with Disability Act
- ATS Automatic Transfer Switch
- CHP California Highway Patrol
- COBI California Oregon Broadcasting Inc
- DES Division of Engineering Services
- DFM Department Furnished Materials
- DO District Office
- GEM Ground Enhancement Material
- LOS Line of Sight
- NLOS No Line of Sight
- PIF Public Information Finding
- RTL Ready to List
- R/W Right of Way
- SFM State Fire Marshal
- TCE Temporary Construction Easement
- UFER Concrete-Encased Electrode (Herbert G. Ufer engineer who discovered)
- USFS United States Forest Services

Background Purpose

- MW expansion as discussed in the first presentation by Jeremiah
- Coverage for elements along I-5 in northern part of District

Background Purpose

- MW expansion as discussed in the first presentation by Jeremiah
- Coverage for elements along I-5 in northern part of District
- Sha & Sis Counties I-5 (~30 Miles)
 - CCTV: 10 Existing & 4 Planned
 - CMS: 4 Existing & 3 Planned
 - HAR & FB: 4 Existing
 - RWIS/NIPS: 3 Existing & 1 Planned
- Sis County SR-89 (~5.5 Miles)
 - CCTV: 1 Existing & 1 Planned
 - RWIS/NIPS: 1 Existing & 1 Planned

Site Evaluation District Office (DO) \rightarrow Bass Mtn \rightarrow Sugarloaf \rightarrow ???

- Next mountain top options
 - Mt Bradley
 - Lower Bradley
 - Soda Ridge
 - Grey Butte

Site Evaluation

District Office (DO) \rightarrow Bass Mtn \rightarrow Sugarloaf \rightarrow ???

CALCULATED-MAX2012 BY E. Beats J. Perros • Block diagram of the next mountain top and roadside elements it will cover Construction e) 55 al 1

Site Evaluation District Office (DO) \rightarrow Bass Mtn \rightarrow Sugarloaf \rightarrow Mt Bradley

- 10-acre USFS parcel on private logging industry land
- Existing radio tower and vault are not adequate
- Overlooks Siskiyou area (good elevation ~5,500ft)
- Close to I-5; 7-mile maintained dirt road

Site Evaluation District Office (DO) \rightarrow Bass Mtn \rightarrow Sugarloaf \rightarrow Lower Bradley

- Privately owned site on private property
- Existing tower and vault are not adequate
- Overlooks Siskiyou area (moderate elevation ~4,500ft)
- Close to I-5; 5.5-mile maintained dirt road

Site Evaluation District Office (DO) \rightarrow Bass Mtn \rightarrow Sugarloaf \rightarrow Soda Ridge

- State owned (CHP)
- Existing radio tower and vault are adequate
- Overlooks Siskiyou area (moderate elevation ~4,600 ft)
- Close to I-5; 5.5-mile maintained dirt road

Images curtesy of Google Earth

Site Evaluation District Office (DO) \rightarrow Bass Mtn \rightarrow Sugarloaf \rightarrow Grey Butte

- USFS owned vault and tower
- Existing tower and vault are not adequate
- Overlooks Siskiyou area (high elevation ~7,900 ft)
- Further from I-5; access through ski park on tribal lands
- Poor winter access

Sugarloaf \rightarrow Mt Bradley

Sugarloaf \rightarrow Mt Bradley

- LOS verified by software
- 22.36 Miles

Sugarloaf \rightarrow Mt Bradley

- LOS verified
- 22.36 Miles
- 99.999% Uptime (Five nines) calculated by software

Caltrans	Lin	k Analysis	ITS Enginee				
		Sugarioaf to Mt	Mt Bradley to				
		Bradley	Sugarloaf				
Location							
Call Sign		and and and the first state	and the second second				
Latitude		40 54 52.69 N	41 13 18.56 N				
Longitude		122 26 40.95 W	122 18 30.08 W				
Latitude		40.91463611°	41,22182222°				
Longitude	101	-122.44470833°	-122.30835556°				
Azimuth - TN / MN	(°)	018.52 / 004.46	198.61 / 184.50				
Elevation - AMSL	(代)	3930.11	5539.07				
Tower - AGL	(Ħ)	20	50				
Radio Model		Aviat-Eclipse IR 600v4	Aviat-Eclipse IR 600v4				
Antenna Type	12.3	CommScope HX6-6W-6GR	CommScope HX6-6W-6GR				
Tx Antenna Pri - AGL	(ft)	15.00	36.00				
Rx Antenna Pri - AGL	(H)	15.00	36.00				
Transmission Line Type		EWP52-58	EWP52-58				
Transmission Line Length	(ft)	48.00	50.00				
Vertical Angle	(°)	0.67	-0.91				
Antenna Polanzation		Vertical	Vertical				
Frequency - Pri	(MHz)	6000	6000				
Diversity Type	1 . 1	No	ne Las oc				
Path Length	(mi/km)	22.36 /	32,99				
ERP	(dBW)	36.02	36.00				
ERP / EIRP	(dBm)	66.02 / 68.17	66.00 / 68.15				
System Gains	(dpm)	Site A to B	Site B to A				
Tx Antoona Gain	(dBii)	29.10	29.10				
Px Antenna Gain	(dBi)	29.10	39.10				
Tatal System Cale	(dp)	109.70	109.70				
System Losses	100/	Site A to B	Site B to A				
Tx Line Loss	(dB)	0.57	0.59				
Tx Jumper Loss	(dB)	0.46	0.46				
Tx Misc / Safety Loss	(dB)	0.50	0.50				
Tx Connector Loss	(dB)	0.90	0.90				
Rx Line Loss	(dB)	0.59	0.57				
Rx Jumper Loss	(dB)	0.46	0.46				
Rx Misc / Safety Loss	(dB)	0.50	0.50				
Rx Connector Loss	(dB)	0.90	0.90				
Diffraction Loss	(dB)	0.00	0.00				
Foliage Loss	(dB)	0.00	0.00				
Free Space Path Loss	(dB)	139,15	139.15				
Atmospheric Absorption Loss	(dB)	0.31	0.31				
Total System Loss	(dB)	144.34	144.34				
Path Calculations		At Site B	At Site A				
Receive Signal Level - RSL	(dBm)	-34.64	-34.64				
Rx Threshold Level	(dBm)	-72.50	-72.50				
Flat / Thermal Fade Margin	(dB)	37.86	37.86				
Dispersive Fade Margin	(dB)	0,00	0.00				
Dispersive Fade Occurence Factor	1.4	1.	98				
Effective Fade Margin	(dB)	37.86	37.86				
Worst Month Multipath Availability	(%)	99.99928	99.99928				
Worst Month Multipath Unavailability	(sec)	18.68	18.68				
Annual Multipath Availability	(%)	99.99978	99.99978				
Annual Multipath Unavailability	(sec)	69.52	69.52				
Annual 2-Way Multipath Availability	(%)	99.9	9956				
Annual 2-Way Multipath Unavailability	(sec)	139	.05				
Multipath Fading Method: Barnett - Viga Terrain Roughness (w): 140.00 Fade Occurrence Factor (Po): 4.399E-00 Avg, Annual Temp: 60° F / 16° C	nts 2	Climate Factor: 1.00 C Factor: 0.26					

Preliminary Path Analysis Mt Bradley → Antelope

- Potential future mountain top
- LOS Verified
- 32.3 Miles

Mt Bradley \rightarrow Herd

- Potential future mountain top
- No Line of Sight (NLOS)

• 29 Miles

Wyntoon

Mt Bradley \rightarrow Mott Rd

- LOS verified
- 3.15 Miles
- Five nines calculated

Image curtesy of Microwave Path Analysis & SCADA - Micropath Pathanal 5

Caltrans	Link A	nalysis	ITS Engineering			
		UR Desidentite Mark				
Back distance in allowing		Rd Bradley to Mot	Mott Rd			
Location		115				
Call Sign						
Latitude		41 13 18.58 N	41 15 27.78 N			
Longitude		122 18 30.06 W	122 16 15.85 W			
Latitude		41.22182778*	41.25771867*			
Longitude		+122.30835000*	-122.27106944°			
Azimuth - TN / MN	(*)	038.09 / 023.91	218.11 / 203.93			
Elevation - AMSL	181	5540.75	3178.58			
Tower - AGL	(m)	SD	35			
Radio Model		Moseley-NX-GEN-5	Moseley-NX-GEN-5			
Antenna Type	1000	42.00	Radiowaves HP2-4.7			
Pri Astrona Pri - AGL	(11)	42.00	30.00			
Transmission Line Type	18.7	LDE4 5-50	1054-504			
Transmission Line Length	(*)	55.07	75.00			
Vertical Angle	103	-8.20	8.17			
Antenna Polarization		Vertical	Vertical			
Frequency - Pri	(MHz)	4942.5	4967.5			
Diversity Type		Non				
Path Length	(eni/ism)	3.15/	5.05			
ERP	(dBW)	1.32	0.10			
ERP / EIRP	(dBm)	31.32/33.47	.30.10 / 32.25			
System Gains		Site A to B	Site B to A			
Tx Power	(dBm)	8.00	8.00			
Tx Antenna Gain	(GBI)	29.60	29,60			
RX Antenna Gain	(081)	29.60	29.60			
Total System Gain	(08)	- 07.20	67.20			
Ty Line Loss	(dB)	2.34	4.12			
Tx Jumper Loss	(dB)	0.30	0.00			
Tx Misc / Safety Loss	(dB)	0.50	0.50			
Tx Connector Loss	(dB)	0.99	0.74			
Rx Line Loss	(dB)	4.12	2.34			
Rx Misc / Safety Loss	(dB)	0.50	0.50			
Rx Connector Loss	(dB)	0.74	0.99			
Diffraction Loss	(dB)	0.00	0.00			
Foliage Loss	(dB)	0.00	0.00			
Free Space Path Loss	(dB)	120.44	120.48			
Atmospheric Absorption Loss	(dB)	0.04	0.04			
Total System Loss	(dB)	129.95	130.00			
Path Calculations	(dDin)	At Site B	At Site A			
Ry Threshold Level	(dBm)	-85.80	-02.05			
Elat / Thermal Eade Margin	(dB)	23.05	23.00			
Dispersive Fade Marpin	(dB)	0.00	0.00			
Dispersive Fade Occurence Factor	644 P	1.0	0			
Effective Fade Margin	(dB)	23.05	23.00			
Worst Month Multipath Availability	(%)	99,99995	99,99995			
Worst Month Multipath Unavailability	(sec)	1.30	1.32			
Annual Multipath Availability	(%)	99.99998	99.99998			
Annual Multipath Unavailability	(sec)	4.83	4.91			
Annual 2-Way Multipath Availability	(%)	99.99	997			
Annual 2-Way Multipath Unavailability	(sec)	9.7	5			
Rain - Crane - 2003	-	At Site B	AL STA A			
Rain Region	the second	RED BLUFF, C	ALIFORNIA			
Kain Kate	(mm/br)	2193.86	2121.70			
Rain Flat Fade Margin	(48)	23.05	23.00			
Rain Ameliation	(08)	23.05	23.00			
Pain Availability	(96)	99.99987	0.67			
hath this valiability	Charle ALS	0.70	0.07			

C Factor: 0.26

Fade Occurrence Factor (Po): 1.01E-004

Avg. Annual Temp: 60° F / 16° C

Preliminary Path Analysis Mt Bradley → 15-SR89

- LOS verified
- 4.36 Miles
- Five nines calculated

altrans	Link A	Analysis	ITS Engineering				
	1	Mt Bradley to	1				
Paris Seature Projections		15-0R89	15-CR89				
pration							
Call Sign							
attuda		41 13 10 5P M	41 17 05 44 1				
ocoltude		122 10 20 DG W	12219 00 14 90				
		41 351837300	122 10 00.19 W				
Latitude	_	41.22182778"	41.28484444*				
Longitude		-122.30835000*	-122.30226111*				
Azimuth - TN / MN	(0)	004.17 / 349.99	184.17/169.98				
Elevation - AMSL	(11)	5540.75	3488.42				
Tower - AGL	(#1)	50	35				
Radio Model		Moseley-NX-GEN-S	Moseley-NX-GEN-S				
Antenna Type	1.1	RadioWaves HP2-4.7	RadioWaves HP2-4.7				
Tx Antenna Pri - AGL	(#1)	39.00	30.00				
Rx Antenna Pri - AGL	(11)	39.00	30.00				
Transmission Line Type		LDF4.5-50	LDF4-50A				
fransmission Line Length	(71)	64.00	88.00				
Vertical Angle	101	-5.15	5.11				
Interna Polarization		Vertical	Vertical				
Prenuency - Pri	THE PARTY	40475	4977 5				
Trequency - Fil	THEFTAL	101112	4374.3				
Diversity Type	Contract of the	NO	7.03				
Patri Lengol	(mysm)	4.30/	1.02				
LKP	(dBW)	0.94	*1.12				
ERP / EIRP	(dBm)	30.94 / 33.09	28.88 / 31.03				
System Gains	1.0.00	Site A to B	Site B to A				
Tx Power	(dBm)	8.00	8.0				
fx Antenna Gain	(dB()	29.60	29.60				
Rx Anterina Gain	(dB/)	29.60	29.60				
Total System Gain	(dB)	- 67,20	67.20				
System Losses		Site A to B	Site B to A				
Tx Line Loss	(dB)	2.72	5.33				
Tx Jumper Loss	(dB)	0.30	0.00				
Tx Misc / Safety Loss	(dB)	0.50	0.50				
Tx Connector Loss	(dB)	0.99	0.7				
Rx Line Loss	(dB)	5.33	2.7				
Rx Misc / Safety Loss	(dB)	0.50	0.50				
Ry Connector Loss	(48)	0.74	0.94				
Differentian Long	(dB)	0.00	17.00				
College Loop	(LAD)	0.00	0.00				
Tonage Loss	(an)	122.20	122.20				
Here space Papi Loss	(48)	123.20	163.34				
Atmospheric Absorption Loss	(48)	0.05	0.0				
Total System Loss	(48)	139.41	134.45				
Path Calculations	140.00	At Site B	At Site A				
Necerve Signal Level - HSL	(dem)	-B7.21	-67.20				
cx inneshold Level	(dBm)	-85.80	-85.80				
Hat / Thermal Fade Margin	(dB)	18.59	18.54				
Dispersive Fade Margin	(dB)	0.03	0.00				
Dispersive Fade Occurence Factor	17.1	- 1.0	20				
Effective Fade Margin	(dB)	18.59	18.54				
Worst Month Multipath Availability	(%)	99.99963	99.99962				
Worst Month Multipath Unavailability	(sec)	9.65	9.81				
Annual Multipath Availability	(96)	39,99989	99 9998				
Annual Multipath Unavailability	(sec)	15.91	36.53				
Incual 2-Way Multinath Availability	194.1	00.00	9977				
Annual 2-Way Multipath Unavailability	(sec)	72.	43				
Yultipath Fading Method: Barnett - Vigar Ferrain Roughness (w): 140.00 Fade Occurrence Factor (Po): 2.689E-00- Wg. Annual Temp: 60° f / 16° C	4	Climate Factor: 1.00 C Factor: 0.26					

Image curtesy of Microwave Path Analysis & SCADA - Micropath Pathanal 5

Mt Bradley \rightarrow Snowman West

- LOS verified
- 4.86 Miles
- Five nines calculated

Caltrans	Link A	nalysis	ITS Engineering			
	T	Mt Bradley to	Showman			
Location	24	snowinan	Citownian			
Call Sign		and the second second				
Latitude		41 13 18.58 N	41 16 01.33 N			
Longitude		122 18 30.06 W	122 14 12.45 W			
Latitude		41.22182778°	41.26703611*			
Longitude	5.00	-122.30835000*	-122.23679167*			
Azimuth - TN / MN	(*)	050.05 / 035.87	230.09 / 215.92			
Tower - AG	101	50 50	4313,00			
Radio Model	tues	Moselev-NX-GEN-S	Moteley-NX-GEN-S			
Antenna Type		RadioWaves HP4-4.7	RadioWaves HP3-4.7			
Tx Antenna Pri - AGL	(#)	22.00	30.00			
Rx Antenna Pri - AGL	(77)	22.00	30.00			
Transmission Line Type		LDF4.5-50	LDF4-50A			
Transmission Line Length	(n)	44.00	88.00			
Vertical Angle	(*)	-2.74	2.69			
Antenna Polarization		Vertical	Vertical			
Frequency - Pri	(MHz)	4957.5	4982.5			
Diversity Type	Anna in	No	ne			
Fath Length	(mi/km)	4.85 /	7.82			
ERP I ETDD	(dBw)	35 00 / 37 34	20.07 / 20.02			
System Califa	(uproj	Ste A to B	Site R to A			
Tx Power	(dBm)	8.00	8.00			
Tx Antenna Gain	(dBI)	32.90	30.30			
Rx Antenna Gain	(dBI)	30.30	32.90			
Total System Gain	(dB)	-71.20	71.20			
System Losses		Site A to B	Site B to A			
Tx Line Loss	(dB)	1.87	4.83			
Tx Jumper Loss	(dB)	0.30	0.00			
Tx Connector Loss	(dp)	0.50	0.30			
Py Line Loss	(48)	4.83	1.83			
Rx Misc / Safety Loss	(dB)	0.50	0.50			
Rx Connector Loss	(dB)	0.74	1.00			
Diffraction Loss	(dB)	0.00	0.00			
Foliage Loss	(dB)	0.00	0.00			
Free Space Path Loss	(86)	124.24	124.28			
Atmospheric Absorption Loss	(dB)	0.05	0.0			
Total System Loss	(dB)	134.03	134.09			
Path Calculations	(dame)	At Site B	At Situ A			
Receive Signal Level - KSL	(dBm)	-02.83	-02.09			
Flat / Thermal Fade Maroin	(dB)	22 97	22.91			
Dispersive Fade Margin	(dB)	0.00	0.00			
Dispensive Fade Occurrence Factor		1.1	00			
Effective Fade Margin	(dB)	22.97	22.91			
Worst Month Multipath Availability	(%)	39.99981	99.99981			
Worst Month Multipath Unavailability	(sec)	4.89	4.97			
Annual Multipath Availability	(%)	99.99994	99.99994			
Annual Multipath Unavailability	(sec)	18.19	18.51			
Annual 2-Way Multipath Availability Annual 2-Way Multipath Unavailability	(96) (sec)	99.9	9988 70			
Multipath Fading Method: Barnett - Vigar Terrain Roughness (w): 140.00 Fade Occurrence Factor (Po): 3.732E-00-	nts 4 C	Simate Factor: 1.60 Factor: 0.26				

Image curtesy of Microwave Path Analysis & SCADA - Micropath Pathanal 5

Mt Bradley \rightarrow Abrams Lake

Ca

- LOS verified
- 8.68 Miles
- Five nines calculated

Itrans	Link A	nalysis	IT'S Engineering
	1	Mt Bradley to Abrenis	
Partic Status: Pratimizery		Lake	Abrams Lake
ocation			
all Sign			
atitude		AT 13 18 58 N	41 20 40 78 N
anatude		127 18 30 06 W	122 20 39 02 W
atitude		41 221827289	41 344661110
andrude		122 2002/70	-122 244172220
angleddae 781 / Mar	450	242.67 (323.43	127 20 / 129 37
ZIENUTI - IN / MIN	1.01	347.01 / 333.43	10/.36/153.3/
evation - AMSL	(11.)	5540.75	3815.34
ower - AGL	(11)	50	30
adio Model		Moseley-NX-GEN-S	MOSELEY-NX-GEN-S
ntenna Type	1000	RadioWaves HP4-4.7	RadioWaves HP3-4.7
< Antenna Pri - AGL	(n)	26.00	30.00
x Antonna Pri - AGL	(11)	26.00	30.00
ransmission Line Type		LDF4.5-50	LDF4-S0A
ransmission Line Length	(ft)	48.00	88.00
ertical Angle	(*)	-2.20	2.11
ntenna Polarization	100 million (1990)	Vertical	Vertical
requency - Pri	(MHz)	4952.5	4977.5
wersity Type		Nor	C.
ath Length	(mi/km)	8,68/	13.97
2P	(dBM/)	16.92	12.07
PP / FTPP	(dBm)	46 92 / 49 07	42 03 / 44 22
estem Caims	Catality	Site & to #	Site Bite A
Power	(dBm)	20.00	20.00
Antenna Gain	(dBI)	12.90	30.30
Antonia Cala	Depty	30,30	37.00
Total Buston Cala	(dB)	42:00	03.70
Total System Gale	(up)	03.60	03.20
cline Loss	7401	Dite A to B	34CH 0 10 A
Limper Lorr	(40)	0.30	9.03
A Dunipper Lucia	(08)	0.30	0.00
c Misc / Safety Loss	(dB)	0.50	0.50
c Connector Loss	(08)	0.99	9.75
x Line Loss	(dB)	4.83	2.04
x Misc / Safety Loss	(48)	0.50	0.50
x Connector Loss	(dB)	0.74	1.00
iffraction Loss	(dB)	0.00	D.00
oliage Loss	(dB)	0.00	0.00
nee Space Path Loss	(dB)	129.27	129.31
tmospheric Absorption Loss	(dB)	0.11	0.11
Total System Loss	(dB)	139.28	139.33
th Calculations	1	At Site B	At Site A
eceive Signal Level - RSL	(dBm)	-56.08	-56.13
x Threshold Level	(dBm)	-85.80	-85.80
at / Thermai Fade Margin	(dB)	29.72	29.67
spensive Fade Margin	(dB)	0.00	0.00
spersive Fade Occurence Factor	10 m	1.0	0
fective Fade Margin	(dB)	29.72	29.67
orst Month Multinath Availability	196.3	99 99977	- DG 00077
lost Month Multinath Linavailability	learly	5.87	5,07
seal Multimeth Anniability	(241.)	00,00003	00 00003
must Multipath Unrealistility	170.)	21.84	22.22
man Polopeci Unevaliability	[sec]	21,84	12.22
nnual 2-Way Multipath Availability	(98)	44.0	986
ultipath Fading Method: Barnett - Vigan errain Roughness (w): 140.00 ide Occurrence Factor (Po): 2.123E-003 vg. Anoual Temp: 60° F / 16° C		Simate Factor: 1.00 Factor: 0.26	

Image curtesy of Microwave Path Analysis & SCADA - Micropath Pathanal 5

Preliminary Path Analysis Mt Bradley → Dunsmuir

LOS and Tower Heights

- Mt Bradley LOS to 12 Roadside and 1 Mountain Top
- Grey Butte LOS to 6 Roadside and 0 Mountain Top
- Soda Ridge LOS to 8 Roadside and 2 Mountain Top

Next Mountain Top			Soda Ridge
Links	Mt Bradley	Grey Butte	СНР
Antelope	25	NA	25
Herd	NA	NA	NA
Gunsight	NA	NA	NA
Hatchet	NA	NA	NA
Humbug	NA	NA	25
	1	0	2

			Soda Ridge
Roadside Links	Mt Bradley	Grey Butte	СНР
Abrams Lake	35	NA	70
Black Butte	35	NA	70
Castle Crags	50	70	NA
Central Mt Shasta	35	70	35
Crag View	NA	NA	50
Dead Horse	NA	70	NA
Deetz	35	NA	70
Dunsmuir	NA	NA	70
15-SR89	35	35	35
Mott	35	80	35
Ream Rd	35	35	NA
Sims	NA	NA	NA
Snowman	70	70	70
Snowman West	35	35	40
South Dunsmuir	NA	70	70
Summit	70	NA	35
Sweetbrier	50	70	70
Weed Water Tower	70	NA	NA
	12	6	8

Site User Coordination

Mt Bradley

Roseburg Timber

US Forest Service (USFS)

• California Oregon Broadcasting Inc (COBI)

Soda Ridge

• California Highway Patrol (CHP)

Mt Bradley Access

Mt Bradley Tower

- Long road with lots of turns and branches
- Three gates
- Road conditions well maintained

Mt Bradley Vault and Tower

- Small homemade tower
- Small old building, inadequate space
- Inadequate environmental control or backup power

Mt Bradley LOS to Roadside Elements

Mt Bradley Additional Considerations

• Need to replace the existing ancient, unreliable, underground, undersized electrical service to the site

Mt Bradley Additional Considerations

- Electrical utility service point is at the Dunsmuir HS
- Private line from this point on

Mt Bradley Additional Considerations

- Agree to USFS Special Use Permit
- No outside private agency allowed in vault or on tower
- Inform USFS of vault/tower occupants every year
- Site alterations must be approved
- Expires in 2048, NOT renewable

To:	IVI e m o r a n a u m Making Conservatio
To:	a Caufornia way of L
	Jeremiah Pearce
	ITS Date: July 18, 2019
	File: 02-Sis-Var- PM Var
	E.A. 4G630
	Faice 1400/14003
From:	DEPARTMENT OF TRANSPORTATION
	William Walker, Senior Right of Way Agent
	Project Delivery, Redding (MS#35)
Subject:	Special Use Permit and Communications Site Lease
	Project Limits: "In Shasta and Siskiyou Counties at various locations."
	Attached is a copy of the Special Use Permit for Mt. Bradley & Snowman's Summit signed by:
	Scott Russell
	Forest Supervisor
	Shasta-Trinity National Forest
	Bedding, CA 96002
	Contact: Stacy Smith 520.026.0642
	contact. Staty Smith 550-520-5045
	Improvements Purchased: None.
	Construction Contract Work: None.
	Excess Land Acquired: None.
	Acquisition Agent: Kelly Babcock
	*Please note USEC stimulations (one attached documentation for th
	complete list)
	No lond use fee will be required unless The State allows an extend
	 No land use lee will be required unless the state allows an outsid private accept to inhabit the chalter and tower.
	Coltante agency to innabit the shelter and tower.
	Caltrans must provide a snapshot of all occupants located in the M
	Bradley equipment shelter on September 30 of each year.
	 Communication Site Lease will expire 12/31/2048. The lease is no
	renewable. Request for new lease must be sent to The Fore
	Service one year prior to lease expiring.
	 Any alternations of the facilities must be approved by The Fore
	Service prior to implementation. The Forest Service may require
	NEPA to be completed depending on the scope of work.
	Attachment
	c. RE file w/attachments
	"Provide a safe, sussainable, insegrated and efficient transportation system

Mt Bradley Additional Considerations

- Coordinate with COBI to replace existing tower, and possible co-locate in new vault
- Coordinate with all mountain top users for electrical utility replacement

Radio Specification

Caltrans Standard Equipment

- As discussed in the previous presentation by Keith
- Use Aviate transceivers with Andrew dishes for backhaul link
- Use Mosely transceivers with RadioWaves dishes for roadside links

- Supported by Civil management and design
- Not a typical design for Caltrans
- Changed project manager at least 3 times
- Changed project engineer at least 3 times

- Right-of-Way dealing with logging company and high school to get path for utility approved
- Had to purchase the trees from logging company and high school
- USFS would not allow power lines to cross their property

- Not a typical design for Division of Engineering Services (DES)
- Tasked with designing a tower foundation at the top of a granite mountain
- Ended up paying Valmont to design the foundation with DES review and plan sheets

- Access to site not always easy
- Requires 4x4 vehicles to access
- Can be inaccessible due to weather
- Trees fall across road requiring dragging off or cutting up

- Preferred Manufacturers
- Valmont Tower (Identical installation at I5-SR44 Bluffs)
- Modular Connections Prefabricated Vault (Similar installation at Bass Mtn and I5-SR44 Bluffs)
- Cummins Generator (Similar installation at Bass Mtn and I5-SR44 Bluffs)

ITS Field Element Network Communications Special Design

 Department Furnished Materials (DFM) require Public Information Finding (PIF)

U.S. DEPARIMENT OF TRANSPORTATION REQUEST F COST HITECTIF	FEDERAL HOP-WAY OR APPROVAL OF COST EFFI ADASS DETERMINATION REQUIRED ADATUME Prostantian 20 GR (224)	ADMENTISATION	CALFORMA DERAF TRANSPORTA TEREST FINE EDMININATION REG					ENT OF					
Case minimulation information for information frances are interest frances are	servecting Methods (2) (20 (20 (20 50)) collifient 3 verifik altigitette serve) (23 (27 8425-147) (0000) (23 (27 8435-200) (23 (27 8435-205) (29 000 (23 (27 8435-200) (20 (27 845)-201)	Date of Some Concept to Key	annia (25 078 615.407) A social See (Altori vils Island Manna v (25 078 6 Jack India (25 076 615 A	REQUEST FO	R APPROVAL OF COST EFF	FECTIVENESS/PUBLIC IN	TEREST FINDIN	NG					
PEDENALAID HKOUDOT K EA - CO-4C630	CLASS OF FEDERAL PUNDS. DIM STEWWRDSHIP (2011/05ATED 0657-CORTE-PM 02-Sha Sa-5,60-Vin	ESTIMATED COST \$2,607,000	R. ASION INTEREST PEDERAL PUN	COST EFFECTIVE	ESS DETERMININATION RECUIRED Dasatism Protosterreat (28 CPR 52:5) tracking Weinsterreat (28 CPR 52:5) tracking Weinsterreit(18 CPR 53:5) untig 12 CPR 53:20(4) 22 CPR 53:50(5) and Equipment (28 CPR 53:500)	PUBLIC INTEREST DETE	PMININATION REQUIRE erials (23 CPR 635.407) Dispositi Site (23 CPR 635.40 etary Materials (23 CPR 635.410) Juliements (23 CPR 635.410)	ED U.S. DEPARTMENT OF TRANSPORTATION REQUEST FO	PEDEPAL HGHWA	Y ADMINISTRATION	GALFORNA DEPARTMENT OF TRANSPORTATION		
GENERAL LOCATION In Shanta and Sidkiyou (Jourtes array (Isade 5 and 10)	GENERAL CESCRIPTION OF WORP Installation of ITS Exupment Claines for CCTV_RWIS, and NIPS systems	K: Is and Cimmon capacit	FEDERAL-ND PROJECT NO E EA 02-4G830	CLASS OF FEDERAL FUNDS IM STEWARDSHIP: DELEGATED DIST-CO-RTE-PM 02-Sha Sis-5,89-Var	NH STEG OTHER PROJECT OF OM ESTIMATED COBT \$2,007,000	R: ISION INTEREST FEDERAL FUNDS	COST EFFECTIVE	VESS DETERMININATION REQUIRED Consistant Procurement (23 OF# 172.5) structing Methods (23 OF# 635.204) athan 2 week advertament) (23 OF# 635.312)	PUBLIC INTEREST DETI	IRMININATION REQUIRED strink (23 CFR 635 A07) Obspool Site (23 CFR 635 A07)		
ITEM REQUESTING AF REASONS THAT THE F The McGain IT'S Equi	ITEM REQUESTING ANRIONAL ITS Colores and Comm Earliner's ESTIMATED TEX COST States, and Anna Systems. ITEM REQUESTING ANRIONAL ITS Colores and Comm Earliner's ESTIMATED TEX COST States and Comm Earliner's ESTIMATED TEX COST. ITS AND AN AN AN ANNA STATES AND			GENERAL LÓCATION In Shaeta and Siekiyou Co	unties along Route 5 and 89	GENERAL DESCRIPTION OF WORP Instalation of emergency back-up pov shelter.	C generator for commun	EA	Intel 23 CFR 643, 200 (24 CFR 643, 204) med Coulpreent (23 CFR 643, 206) CLABS OF FEDERAL FUNDS IM STEWARDISHIP: IM DELEGATED DIST-CO-RTE-PM	Weel Patented and Program Walver of two America teop Dote: Sole Source Other Sole Source Other Sole Source Other Sole Source Other Sole Source DeposeD Of Div ESTIMATED COST	Arry Meterials (23 DTR 635.411) proments (23 DTR 635.410) R //SION INTEREST FEDERAL FUNDS		
which may include. Get invasive Penemini Se Management Center (and NPS used in mor				ITEM REQUESTING APP	ROVAL Emergancy back-up generator QUESTED APPROVAL IS CONSIDERED TO	ESTIMATED ITEM COST O BE COST EFFECTIVE OR IN THE PU	\$30,000.0 BLICS BEST INTEREST	02-40630	02-Sha,Sie-5,89-Var	\$2,607,000			
The use of these cable 1. Provide uniform dis 2. Interoperability we 3. Replacement exch	Bie public to will in making informed and in refs and equipment are in the public's beal (into standard, veurent equipment) angabitity.	hely decisions when moveling interest by additioning the following.		The Mt Bradley Commun aggregated and relayed event of a utility interrup valuable traveler informs The use of this emerger	sication Shelter is a critical hub point whe back to the Transportation Management lion is vital, as a power failure at the site ation in the Redding area.	ere field element data for ITS elemen t Centar (TMC). The need for emerg <i>i</i> would prevent the TMC and travelin best interest by achieving the followir	nts in the Mt Shasta ar gency back-up power in g public from accessin no:	In Shaata and Siskiyou Cou	intes along Route 6 and 89 ROVAL Commis & Generator Shelter	GENERAL DESCRIPTION OF WORK Installation of communications and ge ESTIMATED (TEM COST	TED ITEM COST \$181,873.00		
These terms will be dev Cost (TS Node Equipment (Communication Equip	saturent Kurstned. Jabineta - 824.000 maia - 8875.000			Provide uniform distri Interoperability with o Replacement exchan Ability to fit into existi	ct standard. urrent equipment. geability. Ing maintenance contract.			REASONS THAT THE REQUESTED APPROVAL IS CONSIDERED TO BE COST UPPECTIVE OR IN THE FUBLICE BEST. The Mill, Bredgy communications shelter is a citical hub point where field element data for ITS elements in Stakyou county is aggregated and relayed back to the Transportation Nanagament Cartar (TMC). The read for a robust al-water concrete enclosure to house sensitive electronics is vital, as a failure at the site would prevent the TMC and traveling public from accessi- valuable traveler information. This available traveler information.					
Lomme Hotte, ITS Engineer, of the California Department of Transportanon, on levery certily that, in accordance with requirements of 23 CFR 035 407, this sourchunished material is essential for synchronization with the excising flipting in the second s			These items will be depa Cost: Generator - \$30,01 I, Lonnie Hobbs, ITS En requirements of 23 CFR	riment furnished. D gineer, of the California Department of Tr 635.407, this state-furnished material is	Transportation, do hereby certify that, a essential for synchronization with th	, in accordance with the re existing highway fac	marketed products with the needs and has a well-est District 2 has other Mod system uniformity and int achieving the following; 1. Provide uniform distric 2. Interoperability with o 3. Replacement exchang 4. Long term reliability.	Invivited products with the long-term reliability needs of the District. Modular Connections was the only product that could me needs and has a well-established reputation for delivering quality and dependative communications products. District 2 has other Modular Connections communication shelfer installations. Specifying this communication system uniformity and interoperativity. The use of this communications and generator shelter is in the public's best interest by ecliving the following: 1. Provide uniform district standard. 2. Interopenative with angeability.					
				LIAPPROJED BY CALTRAN	S' INSTRUCT REPRESENTATIVE	INSTRICT REPRESENTATIVE NAME		These items will be depa Cost: Communications a 1, Donald Anderson, Dep that, in accordance with 1 with the existing highway According by Co. TEXA	Internet furnished. Ind generator shelter - \$181,873 Intly District 2 Director Maintenance & Op the requirements of 23 CFR 635,411(a)(y facility. Jennement oppage.cov/tate.com	ps, of the California Department of T (2), this patented or proprietary item	ransportation, do hereby certify is essential for synchronization		

ITS Field Element Network Communications Special Design

 Contractor Furnished Materials require specifications written around preferred manufacture with agreed price and allows for alternative at contractor's discretion

87-16.02G Agreed Price Arrangement

The successful bidder can obtain the following communications and generator shelter equipment from the manufacturer/supplier, Modular Connections, 1090 Industrial Blvd., Bessemer, AL 35022, Telephone (205) 980-4565. The price quoted by the manufacturer/supplier for the communications shelter, FOB Destination, Net 30 is \$181,873.00, not including sales tax.

The above price will be firm for orders placed on or before 06/01/2020, provided delivery is accepted within 90 days after the order is placed.

Qty	Description	Extended Price
1	Monolithic 12'x22' regular weight concrete shelter (Communication)	\$106,967.00
LS	HVAC	
LS	Controls and automation	
LS	Electrical (interior) including lighting	-
LS	Power	
LS	Cable runway	
LS	Interior ground	
LS	Roof access	
LS	Project Management	
LS	Design and permitting	
LS	Assembly	
LS	Testing	1 10 10 10
1	Monolithic 12'x12' regular weight concrete shelter (Generator)	\$58,621.00
LS	Electrical (interior) including lighting	
LS	Automatic transfer switch	
LS	Project Management	
LS	Design and permitting	
LS	Assembly	1.1
LS	Testing	1. 2012
1	Estimated freight/shipping/handling	\$32,000.00
	TOTAL	\$197,588.00

ITS Field Element Network Communications Special Design

Ground System Design

- Detailed presentation at 2009 Forum but Jeremiah Pearce "Ground System Design and its Role in ITS"
- Motorola R56 Standards & Guidelines Chapter 4 "Site Design & Development" and Chapter 6 "External Grounding"
- Lightning protection
- Electrical safety
- Signal propagation (not a concern for this site)
- Granite "soil"

TABLE 4-1 SOIL RESISTIVITY FOR VARIOUS SOIL TYPES Resistivity (kΩ-cm) Soil Type Minimum Average Maximum Ashes, brine, or cinders 0.590 2.37 7.0 Clay, gumbo, loam, or shale 0.340 4.06 16.3 Clay, gumbo, loam, or shale with varying 1.02 15.8 135.0 portions of sand and gravel Gravel, sand, or stone with little clay or loam 59.0 94.0 458.0

NOTE: "Gumbo" is soil composed of fine-grain clays. When wet, the soil is highly plastic, very sticky, and has a soapy appearance. When dried, is develops large shrinkage cracks.

- Testing for soil resistivity
- 4-point Wenner method

- Soil resistivity nomograph
- Single grounding electrode system resistance

- 6.3.2.4 External Ground Ring
 - ... should encircle the site structures and provides a means of bonding ground rods together and bonding other grounding electrode system components together, improving the overall grounding electrode system.

- Multiple grounding electrode system resistance calculation
- Electrodes in a straight line (radial from vault and/or tower)

- Multiple grounding electrode system resistance calculation
- Electrodes in a ring (around vault and/or tower)

- Calculating system resistance of a complex system
 - Subsystem 1 = Vault Ring
 - Subsystem 2 = Radial 1
 - Subsystem 3 = Radial 2
 - Subsystem 4 = Tower Ring
 - 22 total ground rods used

R _{total} =												
	Fig	ure 4	-5	Fi	gure 4	-7					Т	Final
	Resistance			% of single			Resistance		ce	Inverse		Resistance
Vault Ring		95		11				10.45		0.10		
Vault Radial 1		95			41			38.95		0.03		
Vault Radial 2	95		41		38.95		38.95 0.03					
Tower Ring	95			18			17.1			0.06		\frown
							Total		0.21		4.87	

- 6.3.1.4 Concrete-Encased Electrodes (UFER)
 - ...enhance the effectivity of the grounding electrode system in two ways: the concrete absorbs and retains...; and the concrete provides a much larger surface area in direct contact with the surrounding soil. ...helpful at sites with high soil resistivity
 - ...**shall** be encased by at least 2 in. of concrete, ...near the bottom of a concrete foundation or footing that is in direct contact with the earth.
 - ...shall be at least 20 ft. of...steel reinforcing bars or rods at least 0.5 in. in diameter.
 - ...shall be bonded to any other grounding electrode system at the site.

required to be incorporated into the grounding electrode system.

- 6.4.11.7 Stone Mountain Tops
 - ...components buried as deep as the soil will allow and encasing all components with a ground enhancing material.
 - ... radial extensions from the building throughout the property...
 - ...concrete encased electrodes... (UFER)
 - ...down conductors to a lower area where there is usable soil.

- Final construction
 - Vault Ring
 - 2 Radials
 - Tower Ring
 - 2 UFERs (one at utility entrance and one at ice bridge entrance)
- Future (if needed)
 - Down to tree line

- Coordinate with Power Utility (Pacific Power)
- Overhead vs buried service
- Caltrans had to hike and stake the path prior to estimator coming out

- Coordinate with Power Utility (Pacific Power)
- Overhead vs buried service
- Caltrans had to hike and stake the path prior to estimator coming out
- Recent fires change to utilities process and materials

- Coordinate with Power Utility (Pacific Power)
- Overhead vs buried service
- Caltrans had to hike and stake the path prior to estimator coming out
- Recent fires change to utilities process and materials
- Not a typical design for estimator
 - Not willing to provide an estimate
 - Had to push request up the chain of command
 - Received after RTL placed 3x expected in project estimate

- Coordinate with Private Landowners
- Roseburg/Shasta-Cascades Timberland
- Require easement for access and utility
- Roseburg bought out by international company
- Initial contact retired and pertinent information was not passed along to the new contact
- Company contact name changes
 - Roseburg Original landowner
 - Shasta-Cascades Timberland New landowner
 - Land Vest New property management
 - FWS Forestry Services Final property management

- Coordinate with Dunsmuir High School
- Careful about checking in when students are on campus
- Adult Education Forestry course provided opportunity for student logging and management

- Coordinate with Site Owner
- United States Forestry Services (USFS)
- Historic fire lookout built in 1933 must be preserved
- Careful not to restrict viewshed from the lookout
- Color requirement to blend in with natural environment (no white)

Image curtesy of Mt. Bradley Ridge Fire Lookout - Shasta National Forest - Dunsmuir CA - Living New Deal

- Coordinate with Previous Mountain Top Site Owner (Sugarloaf)
- California Highway Patrol (CHP)
- Agreements for tower and rack usage and routing of waveguide

- Coordinate with California State Fire Marshal (SFM)
- Actually a "simple" process
- Classified as a Communications Vault Occupancy Class U Utility and Miscellaneous Group
- Fill out the forms (marshal filled out)
- Prepare drawings for SFM approval
- Provide SFM stamp for bid documents
- Inspection of vault after construction minor changes

ITS Field Element Network Communications Special Design

- No Coordination required with Americans with Disability Act (ADA)
- 2016 ADA Standards Chapter 11B Section 203.5
- ...shall not be required to comply with these requirements...
- ...electrical or communication equipment rooms...

203.5 Machinery Spaces. Spaces frequented only by service personnel for maintenance, repair, or occasional monitoring of equipment shall not be required to comply with these requirements or to be on an accessible route. Machinery spaces include, but are not limited to, elevator pits or elevator penthouses; mechanical, electrical or communications equipment rooms; piping or equipment catwalks; water or sewage treatment pump rooms and stations; electric substations and transformer vaults; and highway and tunnel utility facilities.

Advertising and Prospective Bidders

- Met prospective bidders at the bottom and drove to site
- Mandatory meeting for prime to place a bid
- Liability waiver for site visit
- Two different days provided for flexibility
- Caltrans representative was provided a list of talking points and was not to have knowledge of the project to limit giving different information to the two groups

Advertising and Prospective Bidders

- Low Bidder Requirement
- Only one bidder needed to get special approval to accept
- Local company that worked on a previous vault and tower project so you might expect minor issues (wrong)

Construction Issues

- Multiple Locations to Inspect
- Five active construction sites
 - Multiple foremen, workers getting conflicting information
 - Mt Bradley was not the priority, often just one person working
- 61 miles (2+ driving hours) between sites
- 197 miles (4+ driving hours) round trip from office

Construction Issues

- ITS Project with Civil Construction
- Not typical for Caltrans construction to manage/inspect ITS projects
- 1 or 2 electrical inspectors cover all electrical projects in the entire D2 area
- Had to contract inspection with a private company TDR (which is a civil firm)

Construction Issues

- Winter Weather
- Strong winds and cold
- Winter suspension
- Road plowed to finish construction
- Delay to getting power to the site

Construction Startup and Testing

- Coordinate with Cummins for the generator and ATS
- No power from Pacific Power had to use portable generator to test components and power transfer

Startup Commissioning

Monthly Total Snowfall for DUNSMUIR TREATMENT PL, CA

- Tower work in high winds and cold
- Long lead time on Department Furnished Materials
- Severe winter weather

					-									
	Year	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Season
	1999-2000	0.0	0.0	0.0	0.0	0.0	1.2	2.7	4.9	4.7	0.0	0.0	0.0	13.5
	2000-2001	0.0	0.0	0.0	0.0	1.6	0.0	9.1	36.0	М	0.0	0.0	0.0	М
D02-64 Atmospheric Data X 4: ALERICalifornia - Mt Bradley 2 X +	2001-2002	0.0	0.0	0.0	0.0	М	М	2.8	0.0	2.3	0.0	0.0	0.0	М
	2002-2003	0.0	0.0	0.0	0.0	0.0	15.3	0.0	0.0	0.0	М	0.0	0.0	М
9/2023 08:31%6 PT	2003-2004	0.0	0.0	0.0	0.0	0.2	М	М	М	0.0	0.0	0.0	0.0	М
	2004-2005	0.0	0.0	0.0	Т	0.0	М	М	0.0	1.0	1.2	0.0	0.0	М
	2005-2006	0.0	0.0	0.0	0.0	М	М	М	М	М	1.0	0.0	0.0	М
	2006-2007	0.0	0.0	0.0	0.0	2.4	5.7	0.0	8.5	0.0	0.4	0.0	0.0	М
	2007-2008	0.0	0.0	0.0	0.0	0.0	М	31.9	17.0	0.0	0.0	0.0	0.0	М
	2008-2009	0.0	0.0	0.0	0.0	0.0	19.8	1.0	24.4	3.0	0.0	0.0	0.0	48:2
	2009-2010	0.0	0.0	0.0	0.0	0.5	3.5	19.2	3.5	4.0	5.5	0.0	0.0	36.2
	2010-2011	0.0	0.0	0.0	0.0	9.3	2.7	4.0	12.0	12.2	0.0	0.0	0.0	40.2
	2011-2012	0.0	0.0	0.0	0.0	Т	0.1	19.7	2.3	3.5	0.0	0.0	0.0	25.6
	2012-2013	0.0	0.0	0.0	0.0	0.0	37.4	0.0	0.0	3.8	0.0	0.0	0.0	41.2
	2013-2014	0.0	0.0	0.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0
	2014-2015	0.0	0.0	0.0	0.0	0.0	0.0	М	0.0	0.0	1.5	0.0	0.0	М
	2015-2016	0.0	0.0	0.0	0.0	0.1	5.6	5.6	2.0	0.0	0.0	0.0	0.0	13.3
	2016-2017	0.0	0.0	0.0	0.0	0.6	7.7	30.0	0.0	2.0	0.0	0.0	0.0	40.3
	2017-2018	0.0	0.0	0.0	0.0	0.0	0.0	3.0	0.0	4.5	0.0	0.0	0.0	7.5
	2018-2019	0.0	0.0	0.0	0.0	0.0	0.0	3.5	11.7	0.2	0.0	0.0	0.0	15.4
and the second	2019-2020	0.0	0.0	0.0	0.0	13.5	5.0	4.0	0.0	4.5	0.0	0.0	0.0	27.0
	2020-2021	0.0	0.0	0.0	0.0	0.0	1.7	24.6	0.5	3.0	0.0	0.0	0.0	29.8
Steel .	2021-2022	0.0	0.0	0.0	0.0	0.0	18.0	0.0	0.0	0.0	1.0	0.0	0.0	19.0
	2022-2023	0.0	0.0	0.0	0.0	3.3	11.1	2.6	50.0	36.1	М	М	М	103.1
the second se	Mean	0.0	0.0	0.0	Т	1.4	7.4	8.2	7.9	3.9	0.5	0.0	0.0	25.9
and a start where the start is a start where the start where	Max	0.0	0.0	0.0	Т	13.5	37.4	31.9	50.0	36.1	5.5	0.0	0.0	48.2
Part Have	ax	2022	2022	2022	2004	2019	2012	2008	2023	2023	2010	2022	2022	2009
	Imagecurtes	0.0 V 2012 Sic	0.0 kiv2022 C		0.0 101000		0.0 rađeje N	0.0	0.0 \//@22+b	0.0 er202@no	0.0 hit20211c	0.0 W203thc	0.0	6.0 (m) 2014
	inage curtes	y 07313	N YOU C	punney C		WIC TWC	luges, l	TOMETIN	veati	ci-cont	1110113	weatile	T WYCCO	
Image curtesy of himse//bleneshive/en	86						-	-						~~
TE 10 10 10 10 10 10 10 10 10 10 10 10 10	S aboi man 02 061	13.11 0	ALEDTC - 1	tornia 2	072/02/00	0 00.21.1	6 11	STREET, STREET						

Future Plan

District Office (DO) \rightarrow Bass Mtn \rightarrow Sugarloaf \rightarrow Mt Bradley \rightarrow Antelope

- CalFire owned vault and tower
- Existing radio tower and vault are adequate
- Overlooks Siskiyou area (moderate elevation ~5,870ft)
- Close to I-5; 4-mile maintained dirt road

Future Plan

District Office (DO) \rightarrow Bass Mtn \rightarrow Sugarloaf \rightarrow Mt Bradley \rightarrow Antelope

Images curtesy of Microwave Path Analysis & SCADA - Micropath Pathanal 1

Future Plan

District Office (DO) \rightarrow Bass Mtn \rightarrow Sugarloaf \rightarrow Mt Bradley \rightarrow Antelope

• Antelope LOS to 10 possible Roadside links, total of 20 elements connected

Collier RWIS			
Collier CCTV			
Anderson Grade CCTV			
Anderson Grade FB FE&WBT	Roadside Links	LOS	Distance (Miles)
SP3 SP365 CCTV Proposed	Collier	No	17.5
Vreka Central Yreka CCTV	Anderson Grade	Yes	13
#22 South Vreka CMS ESBT, South Vreka CCTV	SR3-SR365	Yes	9.2
#06 Walters Ln CMS FSBT #05 Walters Ln CMS FNBT	Central Yreka	Yes	8.81
Walters Road HAR	South Yreka	Yes	6.23
Grenada CCTV Proposed	Walters Rd	Yes	5.43
	Grenada	Yes	5.46
Fort Jones Antelope Mtn Tower	Weed Airport	Yes	13.1
	North Weed	Yes	17.3
	South Weed	Yes	19
iew	Shasta River Bridge	Yes	15.6
Gazelle	Summit Dr	No	21.1
The second state of the se	- M. Holowick		
Weed Airport CCTV	os FB ESBT		
ha North Weed RWIS	go r ba obr		
Shasta River Bridge CCTV			
Weed Sandhouse HAR			
South Weed CCTV	CCTV		

Summit Drive RWIS Proposed

Lessons Learned

Design:

- Request a larger TCE from R/W than expected
- Get utility agreements in writing, follow up discussions with emails
- Escalate issues up the chain before it gets down to the wire

Construction:

- Request additional inspection resources for communications projects
- Request help with inspections, new set of eyes on the project
- Don't assume construction inspectors know your office's specific requirements
- Reconsider when helping relocate other users' equipment

Maintenance:

• Access during snow conditions

Questions

