

Design, Development, and Field-Testing of the Caltrans Responder System

Stephen Donecker AHMCT Research Center University of California, Davis Melissa Clark

Division of Research, Innovation and System Information

California Department of Transportation

List of Acronyms and Abbreviations

Acronym	Definition	
AHMCT	Advanced Highway Maintenance and Construction Technology Research Center	
API	Application Programming Interface	
BGAN	Broadband Global Area Network	
BOM	Bill of Materials	
BPF	Band Pass Filter	
CAD	Computer-Aided Design	
Caltrans	California Department of Transportation	
CCTV	Closed-Circuit Television	
CHP	California Highway Patrol	
CMS	Changeable Message Sign	
COTS	Commercial Off–The-Shelf	
DRISI	Caltrans Division of Research, Innovation and System Information	
GPS	Global Positioning System	
HTTP	Hypertext Transfer Protocol	
InciWeb	Incident Information System	

List of Acronyms and Abbreviations

Acronym	Definition	
LOC	Lines of Code	
LPF	Low Pass Filter	
LTE	Long-Term Evolution	
MIMO	Multiple Input Multiple Output	
NDK	Native Development Kit	
OS	Operating System	
PRS	Portable Responder System	
REST	Representational State Transfer	
RF	Radio Frequency	
RWIS	Roadway Weather Information System	
SMTP	Simple Mail Transfer Protocol	
TMC	Transportation Management Center	
UI	User Interface	
VDS	Vehicle Detection System	
VRS	Vehicle Responder System	
Wi-Fi	Wireless Fidelity	
WTI	Western Transportation Institute	

Problem

- An incident has occurred in an area with limited communication options. What do you do to accurately collect and communicate at -scene information to the TMC?
- Assuming there is someone nearby already in the field
- 1. Do they have cellular communications?
 - Take a picture of the incident and communicate additional information via voice/text/email to the TMC
- 2. Do they have radio communications?
 - Communicate information verbally to the TMC
- 3. Do they have a satellite phone nearby?
 - Transport sat phone from nearest location as soon as possible and communicate information verbally to the TMC

Problem

- Do they have what they need in their truck to adequately address the incident?
- In the case of additional equipment needs, has the incident information been accurately communicated with the TMC?
 - Resources take time to transfer to incident locations
 - Over/under scheduling resources will result in cost overages/delays
- Wouldn't it be great if we had a complete mobile system to accurately/rapidly collect and communicate at-scene incident information?

- Prior work (great idea)
 - Hardware
 - Laptop
 - Camera
 - Cellular Phone/Modem
 - Satellite Phone/Modem
 - GPS System

Images provided by WTI-Caltrans, Previous Research

- Prior work (continued)
 - Software
 - OS
 - Responder application
 - Import photos
 - Annotate images
 - Display aerial photos
 - Display topographic maps
 - Obtain weather information by location
 - Obtain roadway information by location
 - Send message to TMC in email format
 - Field evaluated

History

Video provided by WTI-Caltrans Previous Research

History

PHASE	DESCRIPTION	DATES
Responder Phase 1: Initial Design – WTI (Task ID 2079)	Objective was to develop a communication tool that will enhance the collection and sharing of incident, incident response and clearance information between first responders in the field and Traffic Management Center in District 2 Redding expeditiously.	2003-2005
Responder Phase 2: Enhancements and Field Test – WTI (Task ID 1004)	Objective was to further refine the prototype Responder system. Conducted further system development to "harden" the system, making it ready for field use. Software was finalized to accommodate hardware updates and to increase usability and robustness of the system. System was tested in multiple locations and with multiple crews in real use situations.	2006-2009
Responder Phase 3: Enhancements and Specifications – AHMCT (Task ID 1846)	Objective was to get Responder system updated to current technological standards and preparing a prototype system that is ready so the customer can begin the testing system.	2012-2016
Responder Study Phase 3: Testing and Support – AHMCT (Task ID 2927)	Objective was to pilot test the Responder system in Caltrans Districts 2, 3, 4, and 9 and revise Responder hardware and software as needed based on deficiencies identified in field testing.	2016-2018
Responder Phase 4: Transition Phase – AHMCT (Task ID 3098)	Objective of this task is to transition the prototype Responder system from AHMCT to a third-party vendor.	2017-2019
Responder Phase 5: Reproduction and Deployment Phase – IFB (Task ID 3613)	Objective of this task would be to enhance and upgrade Responder system that is not covered during transition phase, purchase the off-the-shelf equipment for additional Responder system units, reproduce the software and hardware for the additional Responder system, and deploy those Responder systems into Caltrans Districts.	2019-TBD
Responder Phase 6: Maintenance Phase – XXXX	Objective of this task would be the on-going maintenance of Responder system.	TBD

- User feedback
- Concerns
 - Communications
 - Cellular
 - Bandwidth
 - Satellite
 - Availability
 - Downtime
 - Bandwidth

- System Composition
 - Hand-held device
 - Tablet / phone
 - Responder application
 - Wireless communication with the vehicular or portable system
 - Vehicular system
 - Highly integrated
 - Self-contained operation
 - Automated services/managers

- Hand-held device
 - Tablet/phone with embedded camera/Wi -Fi
 - Responder application
 - Reporting (automation)
 - Pictures
 - Mapping (street, topographic, aerial)
 - Annotation (pictures, maps)
 - Mail (auto-formatted text, attachments)
 - Feeds
 - » Roadway (CCTV, CMS, Road Information, Chain Control, CHP Incident, VDS)
 - » Weather (Cal Fire, InciWeb, Stream Flow, Zone Alert, Zone Forecast, Daily Weather, RWIS)

- Vehicular system (hardware)
 - Highly integrated
 - Single compact enclosure
 - Embedded computer
 - Communication modems
 - Power management
 - Antennas
 - Wide operating temperature range
 - Communications
 - Multiple options (cellular, sat, etc.)
 - High bandwidth / availability

- Vehicular System (software)
 - Self-contained operation
 - Automated services/managers
 - Reports and meta-data
 - Mail and delivery
 - Mapping
 - Data feeds
 - Communication arbitration
 - Routing

- The system shall
 - (1-1.4.3, 1.8) collect and store incident information and metadata as a collection
 - location (lat, lon, county, route, postmile)
 - infrastructure type
 - lanes blocked
 - vehicle type
 - special considerations
 - timestamps
 - (1.5) collect incident photographs
 - (1.6-1.7.4) facilitate annotation of photographs, and other snapshots
 - (1.9-1.10) allow incident information to be edited and deleted

- The system shall
 - (1.12-1.12.2) identify and search for incidents by date, time, organization, name of responder, county, route, postmile
 - (3.1-3.2) be flexible in deployment to include the possibility of a briefcase, partially fixed within a vehicle, or entirely fixed within a vehicle
 - (3.4-3.4.2) use hardened equipment -20F to +120F (operation),
 -20F to +150F (storage)
 - (3.6) operable directly off vehicle power
 - -(3.7) does not interfere with other work
 - (3.8-3.9) allow for antennas to be removable or permanently fixed
 - (3.10) modular hardware design

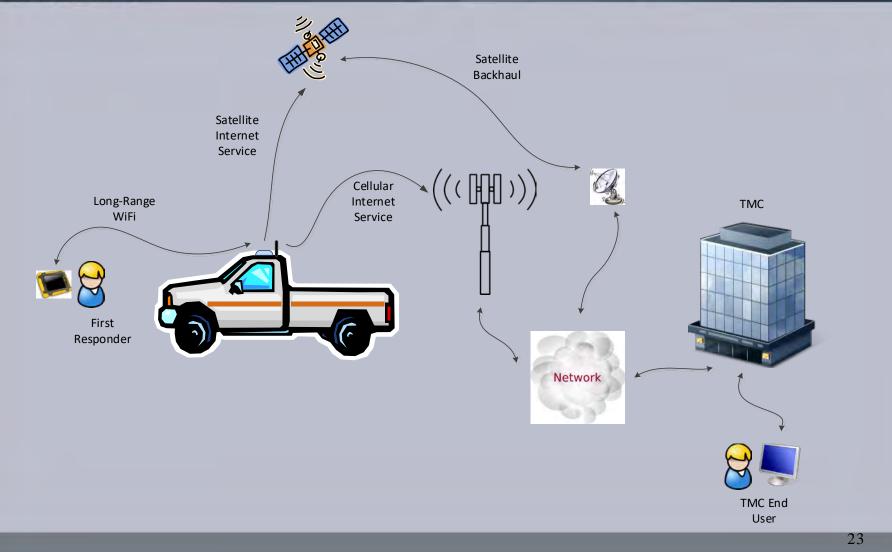
- The system shall
 - -(4.1) be usable up to 200 ft from the vehicle
 - (5.5-5.71) view and management of photographs
 - (5.10.1-5.10.1.1) store default contact information and allow override by selection or entry
 - (6.1) automatically geo-locate the responder
 - (7.2) automated transmission of incident information
 - (7.3) allow users to multitask while communications tasks are in progress
 - (8.2) preview messages prior to transmission
 - (8.3-8.3.2) automatically scale and compress photos and sketches for transmission with user override capability

- The system shall
 - (8.5) transmit incident records as soon as possible
 - (8.6–8.8) allow the selection and transmission of incident information including selected sketches and photographs
 - (9-9.6) display information based on system's location
 - weather forecasts
 - fire information
 - RWIS data
 - chain control
 - stream flows
 - zone forecasts
 - CCTV
 - road, topo, and aerial maps
 - traffic volumes

- The system shall
 - (9.10) use incident location to identify and expedite downloads
 - (9.11) display information within a user selectable radius
 - (10.1-10.2) operable in urban, rural, and mountainous areas
 - (10.3-10.3.1) attempt to mitigate communication failures and retry transmissions in the case of failure
 - (10.3.2) switch over to another communication device in the event of a failure
 - (10.4) notify the user if communication fails

Additional System Requirements Summary

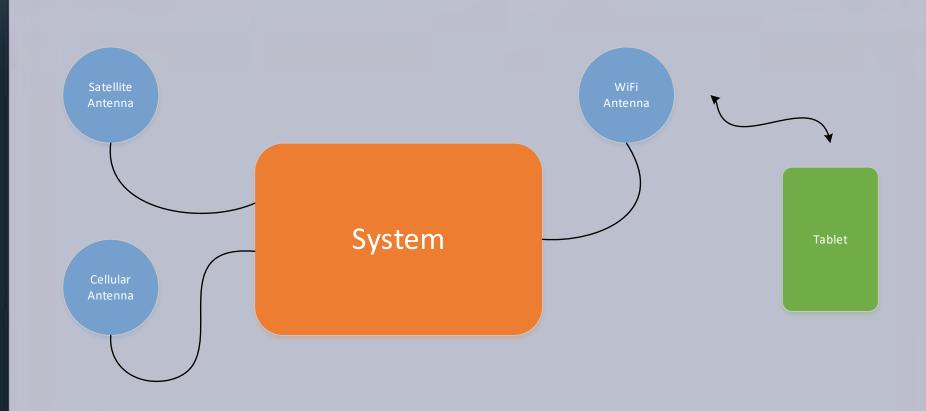
- Autonomous, no server connections required
- Geostationary, high-availability satellites only
- One-way email, send and forget



Subjective System Requirements

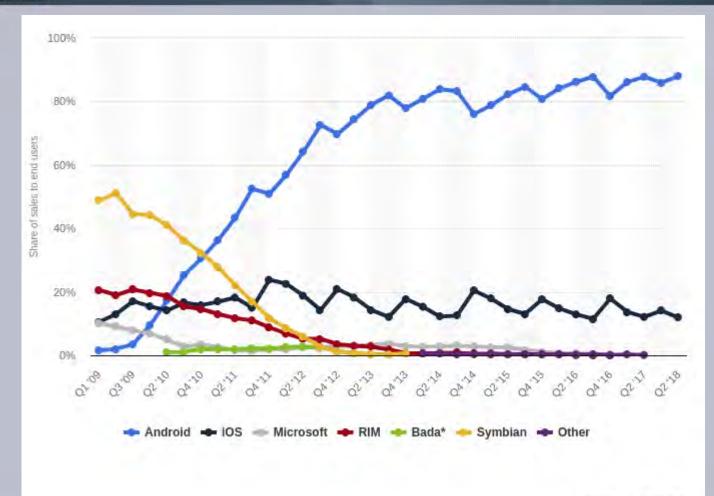
- Internal equipment location
 - end-user desired locations
 - under/behind seat for installed units
 - strapped in seat for portable units
- External equipment location
 - impact on end-users
 - truck bed is fully utilized
 - back rack space limited
 - full rack utilized for other purposes
 - antenna space above cab limited

Overall Architecture



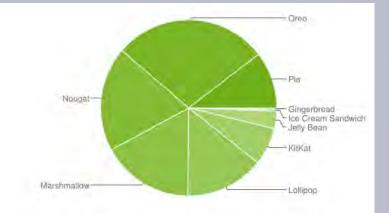
Typical Use Cases

- At location cellular access
- At location satellite access
- Move short distance to achieve satellite access
- Significant distance to achieve satellite or cellular access



Hardware System Architecture

Mobile OS Market Share

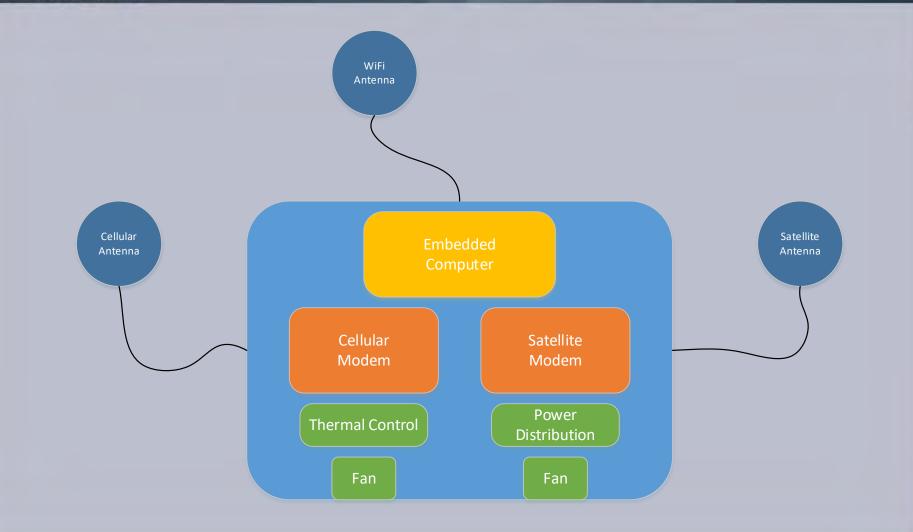


© Statista 2019 🏴

Android Version Market Share

Version	Codename	API	Distribution
2,3,3 + 2,3,7	Gingerbread	10	0.3%
4.0.3 - 4.0.4	Ice Cream Sandwich	15	0.3%
4.1.x	Jelly Bean	16	1.2%
4.2.x		17	1.5%
4.3		18	0,5%
4.4	KitKat	19	6.9%
5.0	Lollipop	21	3.0%
5.1		22	11.5%
6,0	Marshmallow	23	16.9%
7.0	Nougat	24	11.4%
7.1		25	7.8%
8.0	Oreo	26	12.9%
8.1		27	15.4%
9	Pie	28	10.4%

Data collected during a 7-day period ending on May 7, 2019 Any versions with less than 0.1% distribution are not shown.



Target Devices

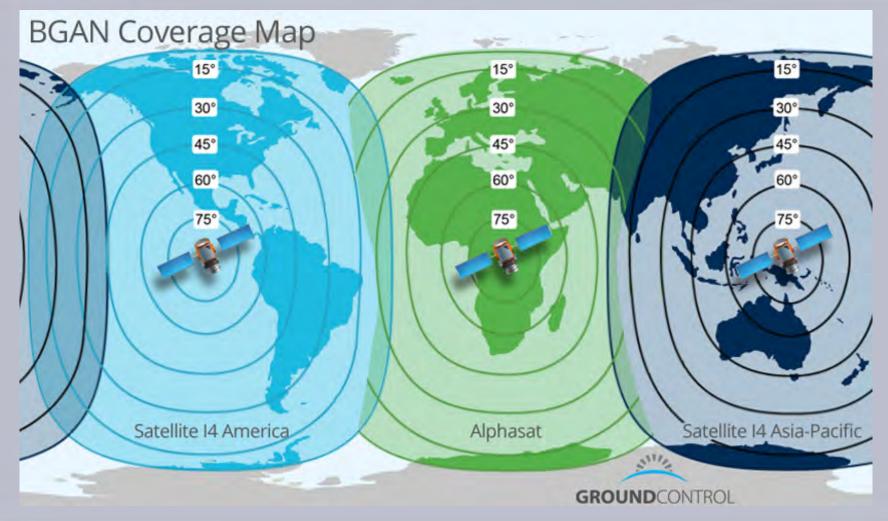
- Android 7.0+
- OS open source (secure, extensible, etc.)
- Supported development languages
 - Java
 - Kotlin
 - C and C++ support through native development kit (NDK)

Hardware Enclosure System Architecture

Considered Satellite Hardware

- •AVL 1078
 - –Cost ~ \$20k
 - -Ku band
 - -3 Mbps x 1 Mbps
 - -IntelSat
 - -\$250/mo for 3 GB \$0.12/MB
 - -Antenna 61.5" L x 40" W x 13.5" H stowed
 - Possible operator input required depending on selection

Considered Satellite Hardware


- KVH TracPhone V3 mini VSAT
 - Cost ~ \$17k
 - Ka band
 - 2 Mbps x 128 Kbps
 - ViaSat
 - \$1.99/MB
 - Antenna15.5" D x 17.6" H
 - Note: Available, but not intended for land-mobile installations

Considered Satellite Hardware

- Hughes 9450-C11 BGAN
 - Cost ~ \$6k
 - Ka band
 - 464 kbps
 - Inmarsat
 - \$6.00/MB
 - --13F to +131F
 - Antenna 10" diameter
 - No operator setup required (mobile, auto-positioning)

Inmarsat Coverage Map

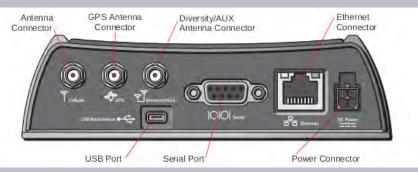
Selected Satellite Hardware

- Hughes 9450-C11
- Rationale
 - Smallest of satellite systems
 - Least intrusion into vehicle workspace

 Although more costly per MB required, typical operational use cases in light of estimated bandwidth consumption is acceptable to lower impact on real -world available workspace

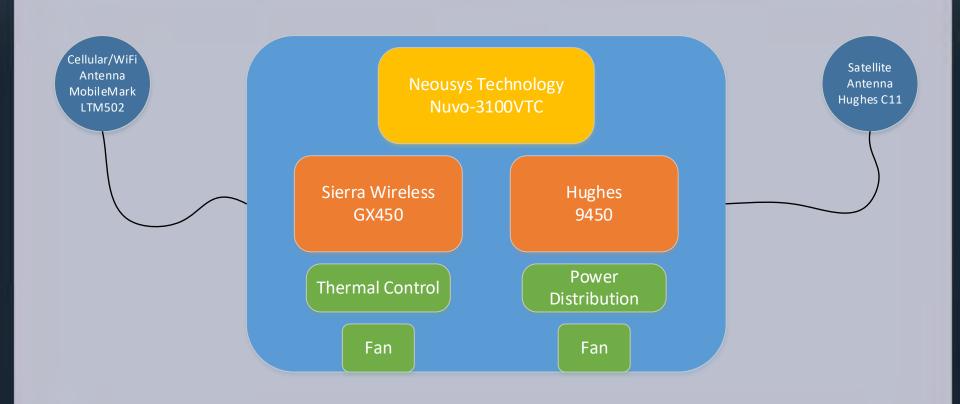
Selected Embedded Computer

- Neousys Technology Nuvo-3100VTC
- -13F to +131F
- Rugged
- Low Power



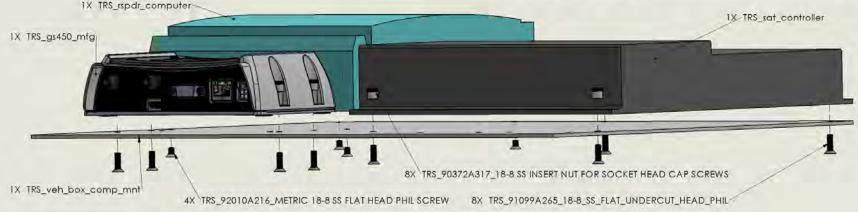
- CPU: Intel i7-3610QE 2.3 GHz
- RAM: Transcend Wide-Temp SO-DIMM DDR3 1600 8 GB
- SSD1: InnoDisk 3ME2 128 GB (mSATA)
- SSD2: Samsung 850 PRO 1 TB
- WIFI: Compex WLE600VX
 802.11ac/n/b/g 2x2 MIMO QCA9882
- NET0: Intel 82579LM Gigabit Network
 Connection
- NET1: Intel I210 Gigabit Network Connection
- NET2: Intel I210 Gigabit Network
 Connection
- NET3: Intel I210 Gigabit Network Connection

Selected Cellular Modem



- Sierra Wireless GX450
 - Verizon LTE
 - --40F to +185F
 - Rugged
 - Low power

Detailed Enclosure System Architecture

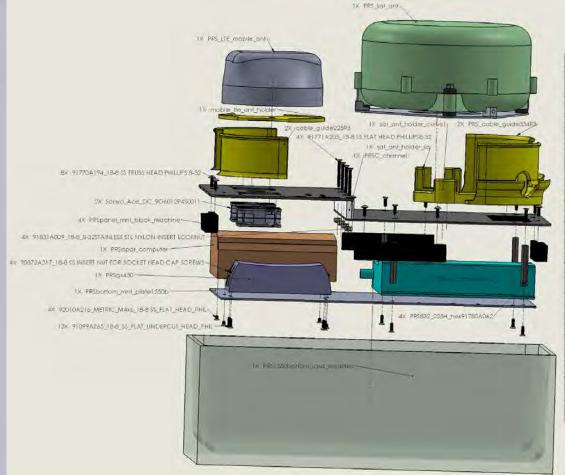

Vehicle Responder Hardware Design

Vehicle Responder Hardware Design

PART NUMBER	File Name	QTY.
TRS_veh_box_comp_mnt	TRS_veh_box_comp_mnt	1
TRS_sat_controller	TRS_sat_controller	1
TRS_rspdr_computer	TRS_rspdr_computer	1
TRS_gs450_mfg	TRS_gs450_mfg	1
90372A317	TRS_90372A317_18-8 SS INSERT NUT FOR SOCKET HEAD CAP SCREWS	8
91099A265	TRS_91099A265_18-8_SS_FLAT_UNDERCUT_HEAD_PHIL	8
92010A216	TRS_92010A216_METRIC 18-8 SS FLAT HEAD PHIL SCREW	4

Vehicle Responder Hardware Design

	PART NUMBER	File Name	QTY.
	LTE_mobile_ant	LTE_mobile_ant	1
	2in_bar	2in_bar	1
	12in_gnd_plane	12in_gnd_plane	1
	91855A360	91855A360_18-8 STAINLESS STEEL CAP NUT	4
	ant_mount_bottom	ant_mount_bottom	1
	92210A547	92210A547_18-8 STAINLESS STEEL FLAT-HEAD SCKT CAP SCREW	4
1	1X LTE_mobile_an		
	1X 12in_gnd_plane		
-		Sheet1	
	1X 2in_bar		
1	4X 92210A547_18-	B STAINLESS STEEL FLAT-HEAD SCKT CAP	SCREW
	1X ant_mount_bot	tom	
1	4X 91855A360_18-8	STAINLESS STEEL CAP NUT	
-			
•			

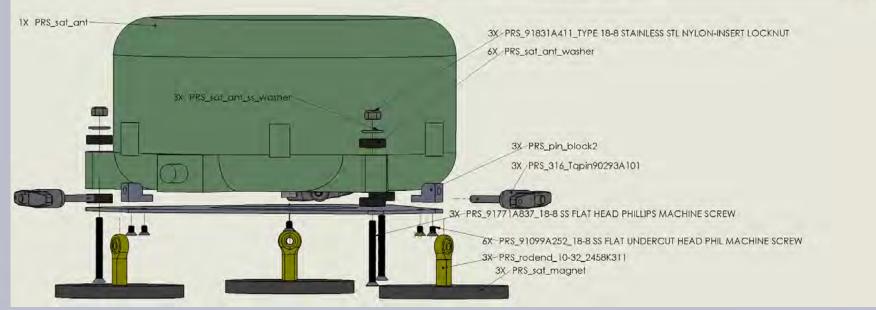

Vehicle Responder Hardware Design

	PART NUMBER	File Name	QTY.
nt	TRS_sat_ant	TRS_sat_ant	1
TT	TRS_sat_ant_ss_washer	TRS_sat_ant_ss_washer	3
	TRS_sat_ant_washer	TRS_sat_ant_washer	6
3X-TRS_sat_anl_ss_washer	91831A411	TRS_91831A411_TYPE 18-8 STAINLESS STL NYLON-INSERT LOCKNUT	3
	sat_ant_mount_plate_final	sat_ant_mount_plate_final	1
	2in_bar	2in_bar	1
	ant_mount_bottom	ant_mount_bottom	1
	92949A838	92949A838_18-8 SS BUTTON-HEAD SOCKET CAP SCREW	4
	91855A360	91855A360_18-8 STAINLESS STEEL CAP NUT	4
ÎÎÎ	92196A279	92196A279_18-8 STAINLESS STEEL SOCKET HEAD CAP SCREW	3
	4X 92949A838_18-8 SS BUTTON-HEAD SC 6X_TRS_sat_ant_washer 1X-sat_ant_mount_plate_final	OCKET CAP SCREW	

Gr Caltrans

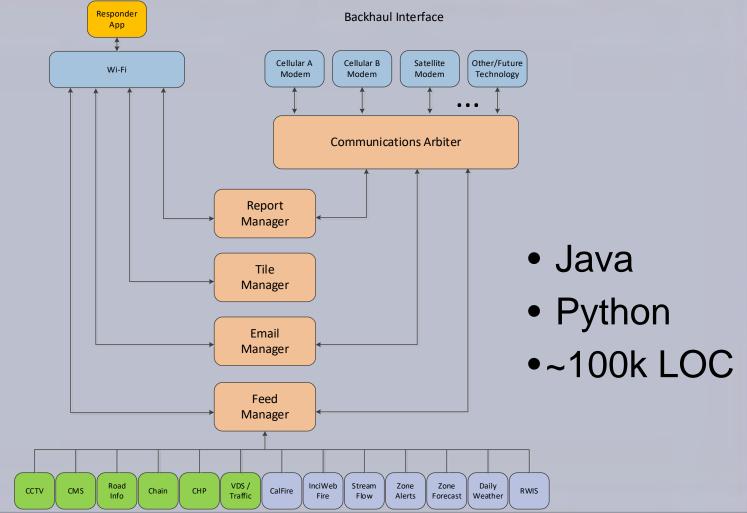
ADVANCED HIGHWAY MAINTENANCE & CONSTRUCTION TECHNOLOGY RESEARCH CENTER

Portable Responder Hardware Design

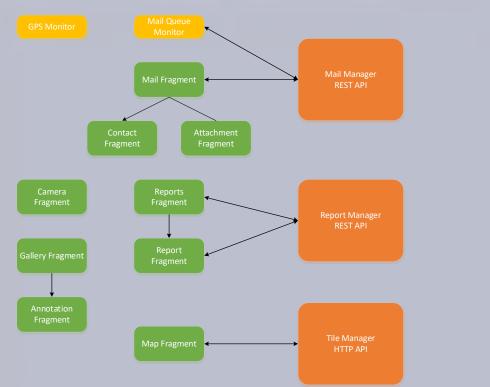

PART NUMBER	File Nome	QTY
PRS1550bottdm_solid_modified	PRS1550pottom_solid_modified	7
PR\$bottom_mnt_plate1.550b	PRSbattom_mnt_plate1550b	- 1
PRSsat_controller	PRSys1_controller	7
PRSispdi_computer	PRSispdi_computer	1
PRSgx450	PRSgx450	
91780A062	PR\$832_225H_hex91780AQ62	d
PRSsal_topcover_1550a	PRSsci_topoovwi_1550a	1
PRScompt_topcover_1550a	PRScomptr_topcover_1650a	T
PRSC_channel	PRSC_channel	T
PR\$panel_mnt_block_machine	PRSpanwi_mnt_block_mactione	-10
fangvard_20150614-25888_beay	fanguard_20150614-25888_body	2
91099A265	RI09RA265_18-0_55_FLAT_UNDERCUT_HEAD_PHIL	12
91770A194	91770A194_18-8 55 TRUSS HEAD PHILLIPS 8-32	8
21771A203	9177) A203_18-8 SS FLAT HEAD PHILLPS8-32	4
90372A317	90372A317_18-8 SS INSERTINUT FOR SOCKET HEAD CAP SCREWS	- 4
21831A009	91831 A009_18-8_8-325TAINLESS STL NYLON-INSERT LOCKNUT	4
R2010A216	92010A216_METRIC_M4x6_T8-8 SS_FLAT_HEAD_PHIL	4
cable_guide225R3	cable_guide226R3	2
PRS_cable_guide334R3	PRS_coble_guide334R3	2
PRS_sot_ant	PRS_sot_ant	1.
PRS_sat_ant_ss_washki	PRS_sat_ant_ss_washiir	3
PRS_sat_ant_washer	PRS_sat_ont_washer	5
PRS_sat_ant_mag_mount_plate2	PRS_sat_ant_mag_mount_plate2	1
91099A232	PRS_91099A252_18-8 SS FLAT UNDERCUT HEAD PHIL MACHINE SCREW	ġ.
P1831A411	PRS_91831A411_TYPE 18-8 STAINLESS STL NYLON-INSERT LOCKNUT	3
91771A837	PRS_91771A837_18-8 SS FLAT HEAD PHILLIPS MACHINE SCREW	з
PRS_pri_block2	PRS_pin_block2	3
sat_ont_holder_sq	sat_ant_holder_sa	7
sat_ant_holder_curve1	act_ant_holder_curve1	1
möbile_ite_ant_hölder	mobile_ite_ant_holder	-1
le_ant_holder_steelplate	ite_ant_holder_steeplate	1.15
te_ant_holder_alignment	Ite_ant_holder_alignment	1
PRS_LTE_mobile_ant	PRS_LTE_mobile_ant	1
Sanyo Ace DC 9G6012P450011	Sanyo Ace DC 95:6012P450011	2

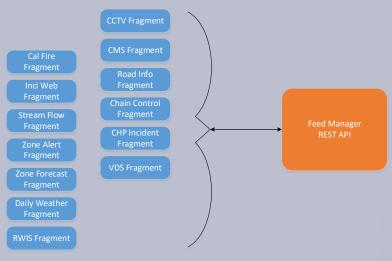
Grahans

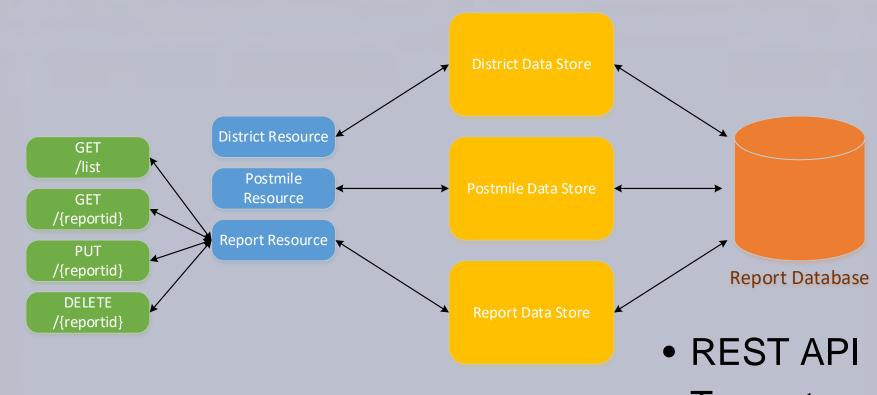
ADVANCED HIGHWAY MAINTENANCE & CONSTRUCTION TECHNOLOGY RESEARCH CENTER


Portable Responder Hardware Design

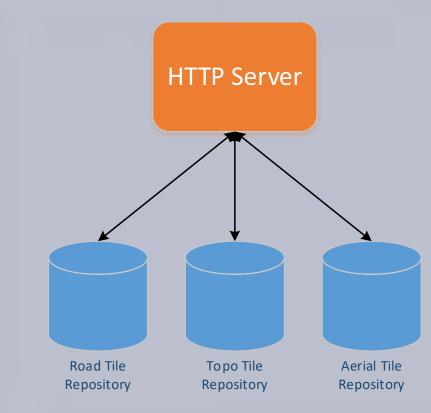
PART NUMBER	File Name	QTY.
PRS_sat_ant	PRS_sat_ant	1
PRS_sat_ant_ss_washer	PRS_sat_ant_ss_washer	3
PRS_sat_ant_washer	PRS_sal_anl_washer	6
PRS_sat_ant_mag_mount_plate2	PRS_sat_ant_mag_mount_plate2	1
2458K311	PRS_rodend_10-32_2458K311	3
PRS_sat_magnet	PRS_sat_magnet	3
92196A269	92196A269_18-8 STAINLESS STEEL SOCKET HEAD CAP SCREW	3
91099A252	PRS_91099A252_18-8 SS FLAT UNDERCUT HEAD PHIL MACHINE SCREW	6
91831A411	PRS_91831A411_TYPE 18-8 STAINLESS STL NYLON-INSERT LOCKNUT	3
91771A837	PRS_91771A837_18-8 SS FLAT HEAD PHILLIPS MACHINE SCREW	3
PRS_pin_block2	PRS_pin_block2	3
90293A101	PRS_316_Tqpin90293A101	3




Software System Architecture

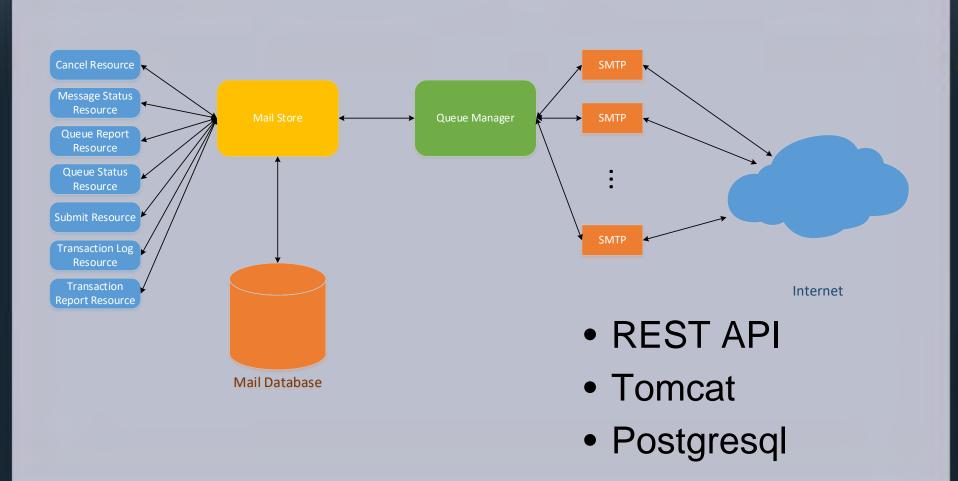

Responder Software Architecture

Report Manager Software ADVANCED HIGHWAY MAINTENANCE Architecture & CONSTRUCTION TECHNOLOGY

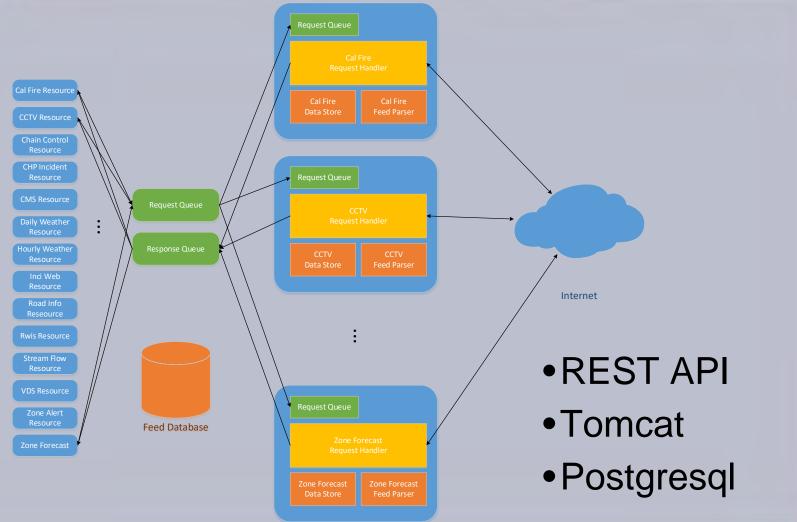


RESEARCH CENTER

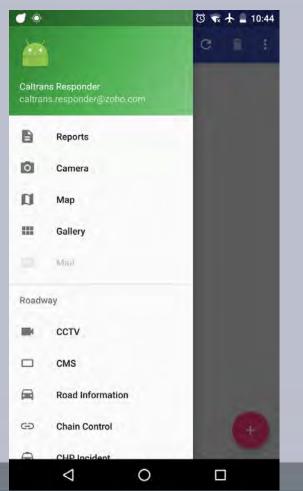
- Tomcat
- Postgresql

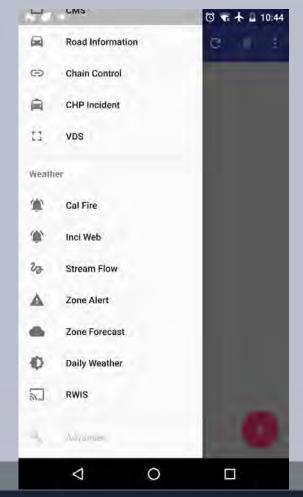

Tile Manager Software Architecture

- Tile levels 9-17
- 800 GB total
- Mercator projection tile organization



Mail Manager Software Architecture


Feed Manager Software Architecture



Navigation

Navigation

Primary Screenshots

Reports

Report

4 0:	* 🗇 😪 🖬 1:0
≡ Report	± @
Responder	
Name	
John Smith	
Örganization	
Caltrans	
Dirmct	
3	
39° 35' 48.69"	
bongnude	
-120° 43' 40.24"	
Direction	
NB	
Criteridy	
SIE	
Rauté	
< (ОП

Report Location

1 () ()	* 🖾 🖡 🖬 1:07
≡ Report	± 0
Location	
Lautude	
39° 35' 48.69"	
Longmide	
-120° 43' 40.24"	
Direction	
NB	
Crowny	
SIE	
Route	
49	
Postmile	
23.499L	
Destruction	
Near the campground	
Infrastructive type	
Conventional Highway	

Report Incident

10	* 🗇 🗫 🖬		
≡ Report	1		
Incident			
🛃 Lanes Blocked			
MB/EB total			
1			
NB/EB blocked			
SB/WB total			
1			
SB/WB blocked			
1			
Туре			
Other			
Vehicle type			
Special considerations			
Mudslide			

Primary Screenshots

Infrastructure Type

Ô.	🕈 🕇 🐨 🖬 🖬 10:4
R	apori ± 🤅
Infra	astructure Type
	Bridge
	Connector
	Conventional Highway
	Mainline
	Off Ramp
	On Ramp
	Rest Area
	Surface Street
	Toll Plaza
	Tunnel
	CANCEL OK

Incident Type

Inci	dent Type
	Abandoned Vehicle
	Accident Major Injuries
	Accident Minor Injuries
	Accident No Details
	Accident Property Damage
	Disabled Vehicle
	Emergency Closure
	Jumper
	Possible Fatality
	Vehicle Fire
	Other
	CANCEL OK

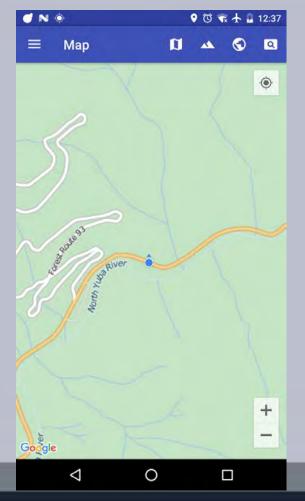
Vehicle Type

		• * 0 •	a 🍽 🔲 10:	40
Veh	icle Type			#/
	Aircraft			
	Bicyclist			
	Big Rig			
	Bus			
	Motorcycle			
	Pedestrian			
	State Equipment			
	Trailer			
	Train			
	Truck			
	Vehicle			
		CANCEL	OK	
18 18	_2019 ⊲ O			

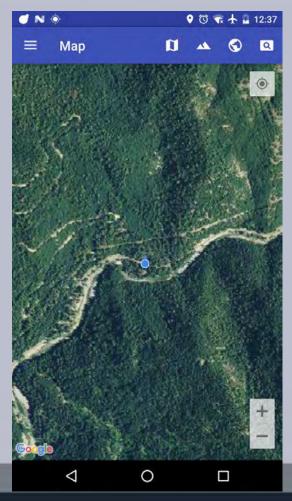
Special Considerations

۵ ۹	१ ४ ७ 🖬 🖬 🖬
Spe	cial Considerations
	Avalanche
	Bomb
	Damaged Hybrid/Electric Vehicle
	Dust
	Fire
	Flood
	Fog
	Gas Leak
	Hazmat
	Mudslide
	Powerlines Down
	CANCEL OK
une 16	2019

Report Timestamp


Camera

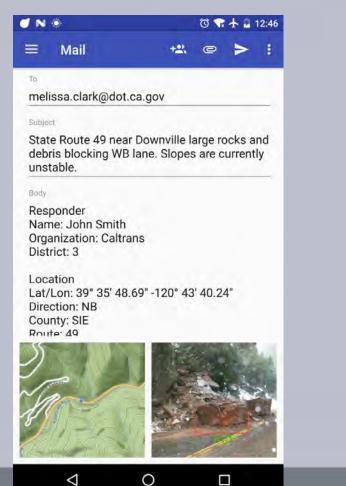
Road Map

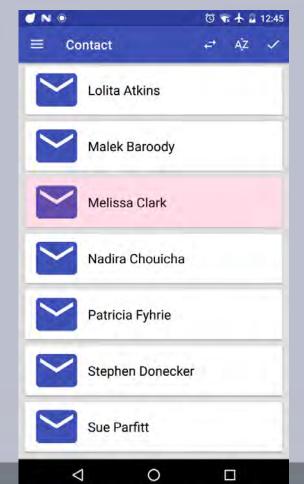

Торо Мар

Aerial Map

Primary Screenshots

Gallery


Annotation



Primary Screenshots

Mail

Contact

Attachment

Information Screenshots

CCTV

CMS

ADVANCED HIGHWAY MAINTENANCE Information Screenshots

Road Information

RESEARCH CENTER

WEDNESDAY THRU THURSDAY THRU 5/25/17 -

Chain Control

11 🦙 🔜 50° 🎉 🔞 🐨 🛧 💄 4:36 0 Chain Control 0 ۲ = SR-3 North PM 16.3 Status: R-1 Chains, traction devices or snow tires are required on the drive axle of all vehicles except four wheel or all wheel drive vehicles. SR-3 PM 18.6 Status: R-0 No chain controls are in effect at this time. SR-3 South PM 22.5 Status: R-1 Chains, traction devices or snow tires are required on the drive axle of all vehicles except four wheel or all wheel drive vehicles. SR-3 South PM 6.5 Status: R-0

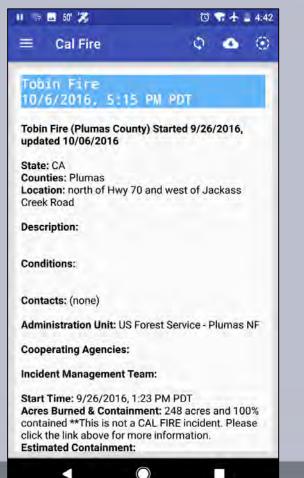
No chain controls are in effect at this time.

 \bigcirc

1

SR-3 South PM 76.1

Weather Screenshots


CHP Incident

Gr Cakrans

Weather Screenshots

Cal Fire

InciWeb

💵 📪 🔜 50° 🎉 to 🐨 🛧 🔤 4:44 Inci Web \odot C) • = Pony Fire Updated Timestamp: 2016-11-08T20:22:39Z Type: Wildfire Basic Info. Desc.: Wildfire Forest Name: Klamath National Forest Location: Happy Camp Ranger District, one-half mile northeast of Pony Peak, 15 miles southwest of Happy Camp, 17 miles north of Somes Bar and 2.7 miles west of State Highway 96 and the Klamath River. Description: The fire is 100% contained as of 6 October 2016, at 2, 860 acres. The Pony Fire burned on the Klamath National Forest, west of Highway 96 and about 15 miles southwest of Happy Camp, within the perimeter of the 2001 Swillup Fire and the 2008 Three Fire. This will be the last update. Date of Origin: Tuesday June 07th, 2016 approx. 11:32 AM Estimated Containment Date: Thursday October 06th, 2016 approx. 02:00 PM Weather Concerns: Incident Commander: Cory Thompson Cause: Lightning Fuels Involved: Heavy logging slash, Timber (litter and understory), Chaparrel (6 feet). Significant Events:

 \bigcirc

15

Weather Screenshots

Stream Flow

Zone Alert

Zone Alert	0 0
= Zone Alert	4 6
High Surf Advisor	y.
ALERT: High Surf Advisory is 2:57PM PST until January 2 NWS	
Areas: CAZ101; CAZ103; CA	
Effective: 1/24/2017, 2:57 P	
Expires: 1/26/2017, 4:00 PM	IPSI
Urgency: Expected Severity: Minor	
Certainty: Likely	
High Surf Advisory issued Ja PST until January 26 at 4:00	
Eureka:	
HIGH SURF ADVISORY IN WEDNESDAY TO 4 PM PST	IEFFECT FROM 4 PN
THURSDAY IN 4 PM PST	
THE NATIONAL WEATHER	SERVICE IN EUREKA
HAS ISSUED A HIGH SURF	
ADVISORY WHICH IS IN E	FFECT FROM 4 PM
WEDNESDAY TO 4 PM PST	
THURSDAY. * WAVES AND SUREBREA	KING WANTE AT
AROUND 23 FEET ALONG WI	
AND NORTHWEST FACING	
* IMPACTSLARGE BREAK	
THE COAST WILL LEAD TO	

 \bigcirc

15

Weather Screenshots

Zone Forecast

Daily Weather

🗱 🔞 🦬 🖬 🛓 3:01 N 6 **Daily Weather** = C HAYFORK 2 Miles NE Del Loma CA Area: 2 Miles NE Del Loma CA Elevation: 2631 **Conditions: NA** Temp.: 54 °F Wind.: 3 MPH SW, gusting 9 Elevation .: 2325 ft. Dew Point.: 44 Rel. Humidity.: 68 Creation: 1/10/2018, 03:22 PST Observation Time: 1/10/2017, 14:24 PST Radar: KBHX Zone: CAZ107 County: CAC105 Fire Zone: CAZ283 Metar: HYFC1 Forecast: This Afternoon 1/10/2018.14:00 PST High: 48 °F Prob. Precip: 20 % A 20 percent chance of showers. Partly sunny, with a high near 48. Light west wind. Tonight 1/10/2018, 18:00 PST

0

 \triangleleft

Weather Screenshots

RWIS

a 💿 🔜 🎇 78°	छ 🐨 🛧 🖬 3:29		
	c	۵	1
AntlersSmtRWIS			
5/25/2017 15:29:19 801			
County: Shasta			
Route: 1-5			
Postmile: 38.9			
Air Temp.: 91.0 °F			
Wet Bulb Temp.: 69.3 °F			
Dew Pt. Temp.: 53.6 °F			
Min. Temp.: 61.0 °F			
Max. Temp.: 92.7 °F			
Visibility Situation: unknown			
Avg. Wind: 5.6 MPH SSW			
Spot. Wind: 4.5 MPH WSW			
Max Gust: 10.7 MPH SW			
Pavement Sensor:			
Location: SHA 5 R38.950			
Surface Temp.: 132.4 °F			
Surface Status: dry			
Black Ice: detector error			
Water Depth: 1.0 in			
Sensor Type: contact passive			
Pavement Sensor:			
Location: SHA 5 R38.940			
Surface Temp.: 142.0 *F			
Surface Status: dry			
Black Ice: detector error			
Water Denth: 1 0 in			

Notification Screenshots

Queueing

đ N O		😇 🐨 🛧 🖬 12:47		
≡ Report		1	۲	
Responder				
Name				
John Smith				
Organization				
Caltrans				
Democi				
3				
39° 35' 48.69"			_	
201.010 401.00			-	
-120° 43' 40.24"				
-120 43 40.24			-	
Directourt				
NB				
County Queueing r	eport for tran	smission		
SIE				
Raulé				
\triangleleft	0			

Outgoing Email

Cutgoing Emails Queued outgoing emails Responder Name John Smith Organization Caltrans

District

3

Location

Latitude

39° 35' 48.69"

Longitude

-120° 43' 40.24"

 \triangleleft

0

Direction

NB

County

SIE

Route

Notification Screenshots

Successful Email

Responder · now ~

Successful Emails 1 successfully delivered emails

DISMISS

John Smith

Organization

Caltrans

District

3

Location

Launde

39° 35' 48.69"

Longitude

-120° 43' 40.24"

Direction

NB

County

SIE

Route

 \triangleleft

Notification Screenshots

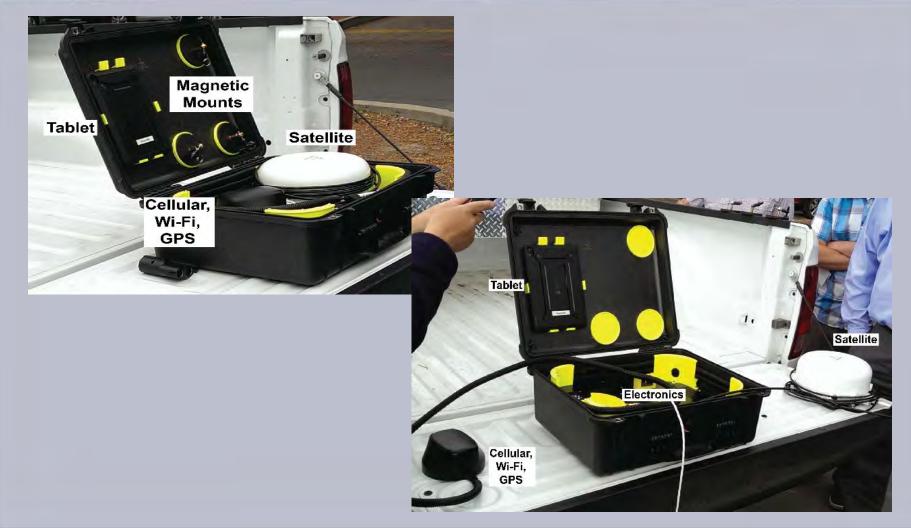
Notification Icons

র প্র ৩	🔯 💀 🛧 🖬 12:51		
≡ Report	± 📀		
Responder			
fvame			
John Smith			
Örganization			
Caltrans			
Diemoct			
3			
1auuude 39° 35' 48.69"			
Longitude			
-120" 43' 40.24"			
Direction			
NB			
Chandy			
SIE			

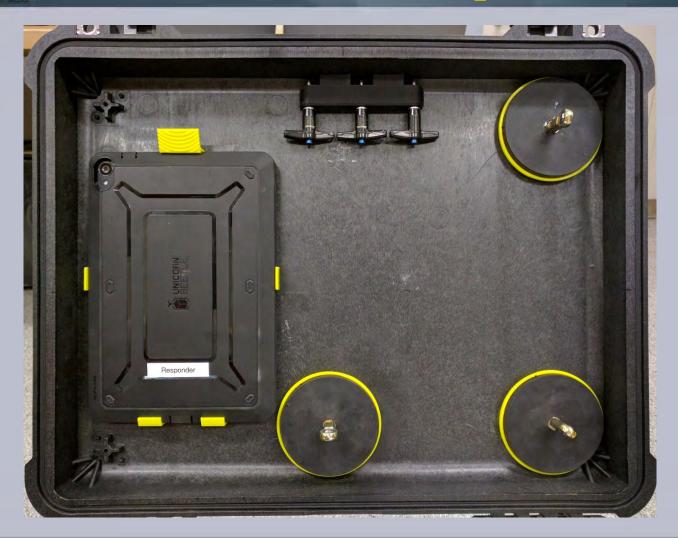
Received Responder Message

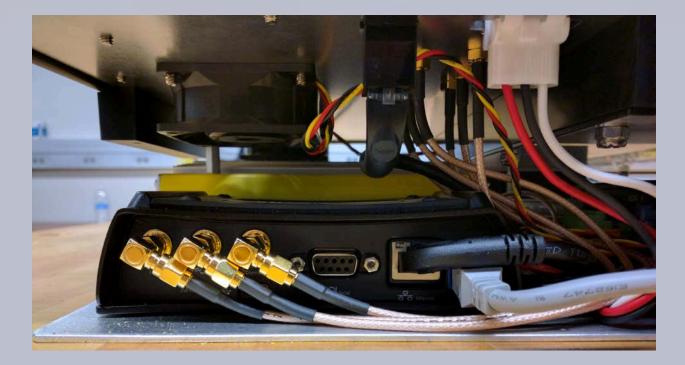

From:	caltrans.responder@zoho.com				
To:	caltrans.responder@zoho.com Siddigui, Asfand Y@DOT; Lomeli, Carlos@DOT; Esquivil, David@DOT; Pearce, Jeremiah C@DOT; Baltazar, Joseph@DOT; Mcneely, Joseph D@DOT; Koeppen, Keith B@DOT; Clark, Melissa L@DOT; smdonecker@ucdavis.edu; talasky@ucdavis.edu				
Cc:					
Subject:	test unit at 7500+ feet in sub-freezing weather powered by solar generator				
Date:	Thursday, December 27, 2018 11:34:20 AM				
	ion: tb region				
Direction County: F Route: 16 Postmile: Descripti	RE 8				
Special C	er ype: Other onsiderations: Other on: test unit at 7500+ feet in sub-freezing weather powered by solar				
Timestamp Start: De Open: Dec	cember 27, 2018 11:13 ember 27, 2018 11:13				

Vehicle Responder Hardware Implementation



Vehicle Responder Hardware Architecture





Portable Responder Hardware Implementation

83

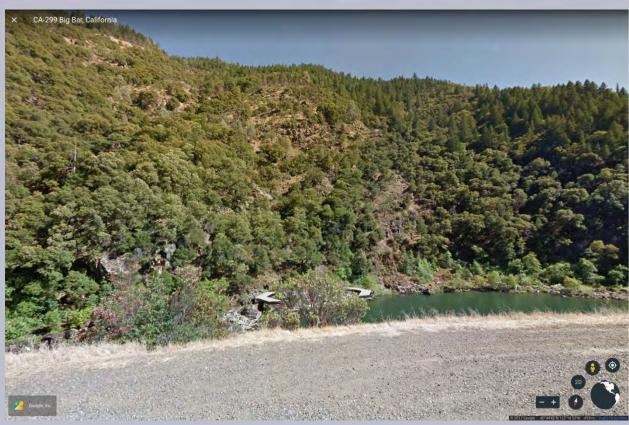
- Conducted in D2, D3, D4, D6, D7, D9, D10, D11
- Rural and urban
- Over land and water
- Temperature extremes
- Mountains, bridges, urban canyons

Field Testing Plan

- Responder system transferred from AHMCT to district
- On-site operational tutorial
- One month testing commences
 - Actual/mock incidents
 - Maintenance reporting
 - Testing typically performed in challenging locations
- On-site debrief of one or more district staff
- End users complete questionnaire
- Transfer vehicle back to AHMCT for system prep for next district

Satellite constellation

- -The Responder system supports Inmarsat BGAN I-4 series of satellites
- Inmarsat 4-F1 Asia
- Inmarsat 4-F2 Europe
- Inmarsat 4-F3 Americas


Satellite pointing

Look angles for the Inmarsat
 4-F3 from each district's
 headquarters

District	Elevation (degrees)	Azimuth (degrees)
1	35.5	128.0
2	36.6	130.3
3	38.9	130.9
4	39.2	129.5
5	42.3	130.7
6	41.4	132.8
7	44.7	133.9
8	45.1	135.5
9	41.5	135.1
10	39.5	131.0
11	46.5	135.0
12	45.2	134.5

Report 2 generated and sent from TRI 299 33.296L

This actual incident report lists the incident as a big rig over the bank in the river below. The purpose of this image is to show the unobstructed view of the sky, although a reasonably tall mountain is just ahead. The report was successfully sent over the satellite communications system.

Report 3 generated and sent from SHA 299 1.780L

The purpose of this image is to show the partially obstructed view of the sky due to the nearby foliage and the reasonably tall mountain in the background. The report was successfully sent over the satellite communications system.

Report 4 generated and sent from TRI 299 26.356R

The purpose of this image is to show the partially obstructed view of the sky due to the nearby foliage, the adjacent hill, and the reasonably tall mountain in the background. The report was successfully sent over the satellite communications system.

- Key Results (Weaverville Maintenance)
 - Improves ability to communicate incidents to the TMC
 - Would use Responder system 75% of the time to respond to incidents
 - Would definitely use the Responder system for other maintenance work
 - –Need two-way communication (i.e., notification of report receipt and response from recipient)
 - -Long message transmission times

- The VRS was delivered to District 3
- However, evaluation was not conducted due to district resource issues

Report 1 generated and sent from MNO 395 102.793R

The purpose of this image is to show the view of the sky with a pair of mountains in the background. The report was successfully sent over the satellite communications system.

Report 3 generated and sent from INY 168 28.968R

The purpose of this image is to show the view of the sky and the mountains in the background. The report was successfully sent over the satellite communications system.

- Key Results (District Management)
 - Well done, very intuitive
 - Improves ability to communicate incidents to the TMC
 - Typically use the Responder system to respond to incidents 50% of the time
 - The Responder system would be used for other maintenance activities where other forms of communication are unavailable
 - Need to be able to conduct two-way communications as satellite is the only communications option

- D4 Oakland Bay Bridge deck and surrounding water
 - existing cell communication periodic
- D6 near Huntington Lake
 - existing no cell, no radio
 - 7500ft snow
 - run from solar power
- D7 Vincent Thomas Bridge LA Harbor deck

- D11 San Diego harbor
- D11 Pacific Ocean near Coronado
 - existing cell signals did not work, Mexico hijacked service

- Key Results
 - Quite impressive
 - On bridges
 - Water around bridges
 - San Diego Harbor
 - Los Angeles Harbor
 - Pacific Ocean
 - Central Valley
 - Sierra Nevada
 - Runs on solar power

Communications are stressed between bridge towers

Field Testing Data Analysis

Round 1 testing

 noticed a variety of issues in the logs from the TCP/SMTP communication stack

- resulted in many failed attempts and retries
- primarily short connection timeouts (< 10 sec)
- Made changes to various timeouts, rural communications need long timeouts (30 -60 sec)

Field Testing Data Analysis

- Round 2 testing
 - increased timeouts
 - average send times, 0-4 attachments
 - D2 5.3 seconds, sat
 - D4 2.7 seconds, cell/sat
 - D6 2.8 seconds, cell/sat
 - D7 2.4 seconds, cell/sat
 - D9 14.3 seconds, sat
 - D10 1.5 seconds, cell
 - D11 3.0 seconds, cell

Field Testing Data Analysis

Remaining issues

 add recipient failures due to malformed email addresses

- name.company.com (malformed)
- should be handled by remote mail server, but results in failure
- Found a single failure upon finalization of SMTP DATA command event (rare)
- Found a single message stuck in the send queue event (> 2hrs) (rare)

Field Testing Summary


- Operational concerns
 - Time to complete transmission in challenging environments is key
 - Message retries/attempts typically require moving vehicle
- Significant feature requests
 - Disable visibility of select feeds
 - Two-way communications
- Conclusions
 - Well received, all would like a Responder system
 - Really like the automation at all levels (i.e. district, postmile, etc.)
 - Very useful in a variety of environments

Additional Observations

- Pulga Maintenance Station (VRS) D2
- Poor nearby geostationary satellite communications due to geography
- Works to the North of Belden and the South of Pulga (*Paradise, Magalia, Concow Fire*)

- Long transmission times
 - Bandwidth issues due to obstructions
 - Possible failures on multiple levels in transmission stack
 - Automated transmission retry assumptions (i.e. late vs. early failure)
- Discuss details regarding antenna interference concerns
- Discuss details from antenna lead engineer

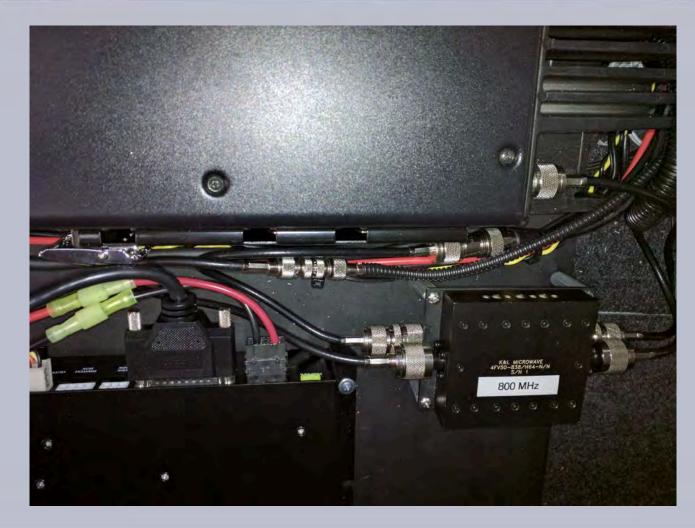
Problems

High-Band Specifications

- K&L Microwave 4FV50-838/H64-N/N
- BPF
- Center 838.8 MHz
- 0.5 dB Bandwidth
 70.4 MHz
- Insertion Loss 0.31dBa
- Stop-band Atten (1525 MHz) 113 dBc

High-Band Filter

Low-Band Specifications


- Microwave Filter
 Company 191141-400
- 400 MHz LPF
- 100 W Max
- 50 dB rejection 1.3 Fc to
 6.0 Fc

Low - Band Filter

Lessons Learned

- Mobile radio interference appears to be a non issue
- Send email failure modes, optimize timeouts and retry intervals to match use cases
- You can never have too much application UI feedback, and backend logging
- Two-way communication is strongly desired
- Use case locations, i.e. sheer cliffs to the south, consider additional satellite system

Looking Ahead

- Detailed manufacturing hardware/software documentation
- Manufacture and deployment of 12 portable Responder systems
- Enhance software based on test feedback, and new feature requests