

## Using Wireless Data Collection Units as Point Detection Systems

### Western States Rural Transportation Technology Implementers Forum June, 2012

Amirali Saeedi, SeJoon Park, David S. Kim, J. David Porter School of Mechanical, Industrial and Manufacturing Engineering

# Acknowledgements

- ODOT Research/OTREC
- ODOT ITS
- Technical Advisory Committee

# Outline

- Objectives
- Approach
- Overview of RSSI
- Tests and results
- Potential applications
- Discussion and Q & A

# Objectives

- Utilize wireless data collection units to accurately identify when equipped vehicles just pass specific points on a road or highway
  - Original motivation was accurate travel time data collection on signalized arterials utilizing Bluetooth-based data collection units





# **Overview of RSSI**

- Received Signal Strength Indicator (RSSI)
  - Value of the strength of a received radio frequency (RF) signal
  - Typically measured in units of decibels milliwatts (dBm)
    - 100 milliwatts  $\rightarrow$  20 dBm
    - 1000 milliwatts (1 watt)  $\rightarrow$  30 dBm
- Advantages
  - No additional hardware is needed to collect RSSI information in small wireless devices
- Disadvantages
  - Sensitive to variability in the transmitter, receiver and antenna orientation

# Overview of RSSI (cont.)

- RSSI
  - The basic circuit is designed to pick RF signals and generate an output equivalent to the signal strength
    - The ability of the receiver to pick the weakest of signals is referred to as *receiver sensitivity* 
      - The higher the receiver sensitivity, the better
  - There are circuits which measure the signal strength based on the *output voltage* 
    - If the signal strength is good, the output voltage is higher and the output voltage is poor if the signal strength is low

# Overview of RSSI (cont.)

- Value of the strength of a received radio frequency (RF) signal
  - A theoretical RSSI can be calculated using known signal propagation models

$$P_r = P_t \left(\frac{\lambda}{4\pi d}\right)^n \qquad PL_{dB} = 20\log\left(\frac{4\pi}{\lambda}\right) + 10n\log(d)$$

• Where

 $P_r = Powerreceived(Watts)$ 

 $P_t = Powertransmittel (Watts)$ 

n = Pathlos x ponent

 $\lambda = Wavelengthofthesigna (meters)$ 

d = distancebetweentrasmittenandreceiver(meters)

 $PL_{dB} = Powerlossindecibels$ 

# Overview of RSSI (cont.)

10

• RSSI vs. Distance for different values of *n* 



# Testing Conducted With Bluetooth DCUs

- Outdoor testing conducted using two known BT devices within a vehicle
  - Local two-lane rural road in Corvallis Three speeds tested
  - Wallace Road (four lanes) in Salem One speed (45 MPH) tested
  - Highway 99W in Tigard DCUs installed at five signalized intersections
  - Reser stadium parking lot using two DCUs with overlapping coverage



# Camp Adair Road, Corvallis Tests

- Antenna Height: 70"
- Distance between antenna's location and the road: 437"
- Width of road: 270"
- Tested Speeds: 25, 35, and 45 mph
- Experiment Design: 30 observations per each travel speed



# Camp Adair Road, Corvallis Tests • Test vehicle and DCU setup

# Camp Adair Road, Corvallis Tests

15

• Camp Adair Road











# Wallace Road, Salem Tests 19 Antenna height and DCU setup Approximate **Installation Height for Reader Unit and Antenna** 221 221



#### Highway 99W Tests 21 • Test setup diagram and pictures SW Fairhaven 🗳 SW White SW Ro SW Hillview Dr Id And St Anthony SW Mc4 SW View Terrace SW Inez St Canterbury. Mountain Rd SW Pemb SW Murdock S SW Ast SW Lady May SW Sattle SW Hoodview D SW Kahl SW Kable S GAARD 2814 Dr ummerfield D **DCU 13**











# **Reser Stadium Tests**

- Two DCUs
  - One DCU at a "signal"
  - One DCU 100 feet from the signal
- 120 vehicle passes
  - 60 West
  - 60 East
  - In some passes, the vehicle stopped at the "intersection".

# **Reser Stadium Tests**

28

• Antenna setup 1



# **Reser Stadium Tests** 29 • Antenna setup 2 5501 SSO



# **Reser Stadium Tests**

- Intersection
  - Includes stops and through passes







# **On-Going Research**

- Better methods for identifying when the vehicle passes the DCU
  - Better results have been obtained
- Testing the use of two DCUs to more accurately (in distance) identifying when the vehicle passes the DCU
  - Adjacent
  - On opposite sides of the road

## **On-Going Research**



# Applications

- Intersection performance data collection
  - Average control delay
  - Average total time at intersection
- Work zone data collection
  - Average time in work zone
- Acceleration/deceleration data
  - Need to evaluate accuracy obtainable

