

Field Experiments with Bluetooth Sensors

Yinhai Wang, Yegor Malinovskiy, Yao-Jan Wu and Un-Kun Lee STAR Lab University of Washington

> Ted Bailey and Matt Neely WSDOT

Presentation Outline

- Concept
- Bluetooth Basics
- Preliminary Studies
- Field Experiments
- Discussion

Main Concept

- Bluetooth basics
 - Each device has unique 48-bit MAC address
 - A device can be found when its "visible" or in "discovery mode"
 - More popular than ever before due to recent cell phone use regulations (hands-free)
- Travel time estimation
 - Obtain MAC addresses at various locations and match identical ones

Bluetooth Applications

- Congestion reporting (which bridge?)
- Network analysis (shortest path)
- Bus stop waiting time
- Bicycle/ped travel time
- Pass travel times
- Before/after studies
- Rural travel time reporting?

Bluetooth Basics

- 2.402 2.480 Ghz Radio Frequency
- Weak signal to prevent interference:
 - Cell phone: up to 3 W
 - Class I: 100 mW ~ 100 m
 - Class II: 2.5 mW ~ 10 m
 - Class III: 1 mW ~ 1 m
- Uses spread-spectrum frequency hopping
 - 79 randomly chosen frequencies
 - Changes frequency 1600 times a second

Bluetooth Discovery

- How to find a device
 - Full spectrum must be scanned, randomly jumping from frequency to frequency
- From Bluetooth specs:
 - "The inquiry substate may have to last for 10.24 seconds unless the inquirer collects enough responses and determines to abort the inquiry substate earlier." - [Bluetooth SIG]

Bluetooth Discovery

10.24s

Detection Zone

- If a vehicle is moving at 60mph, the detection zone needs to be about 900ft (275m).
 - Requires a Bluetooth antenna booster
 - Several versions tested 5,7,9dBi...

 Point to point travel times on both freeways and arterials can be collected, as a Bluetooth device will remain visible for at least 10 seconds.

Preliminary Study

- Montlake Boulevard
 - 12:00pm 1:00pm Mon, Nov 10th
 - Low volumes
 - ~35 mph vehicle speed
 - Burke-Gilman trail adjacent
 - Parking in-between detection zones
- Low Power Antenna (5 dBi)

Study Corridor

60-min Distribution

SR-522 Study Segment

- Available ALPR sensors in place
 - BT sensors may be mounted nearby
- Moderate traffic volumes
 - 20,000 40,000 AADT
- Speeds around 40 50 mph
 - Had success with higher speeds
- Vandalism
 - Avoid bus stops

SR-522 Corridor Segment

NE 170th St Location

Dotted Blue - Omni-Directional Range; Solid Blue - Directional Range; Solid Red - ALPR Zone

61st Ave NE Location

Dotted Blue - Omni-Directional Range; Solid Blue - Directional Range; Solid Red - ALPR Zone

SR-522 Data Collected

- 24 hr continuous tests
 - -October 8th and October 9th
 - -12 dBi Directional antenna (24 hours)
 - ~1,400 readings at each location per day per site
 - 792 matches (0.55 matches per minute)
 - -7dBi Omni-Directional antenna (24 hours)
 - About 2,000 readings per day per site
 - 1340 matches (.93 matches per minute)

SR-522 Data Collected (Directional)

- During October 8th, at 61st AVE
 - ALPR reading: 9879 (WB) and 6598 (EB)
 - Bluetooth reading: 1595 for both directions
 - Detection rate: 10%
- During October 8th, at 170th ST
 - ALPR reading: 9434 (WB) and 7956 (EB)
 - Bluetooth reading: 1375 for both directions
 - Detection rate: 8%
- Matching rate: 57% (792 out of 1375)

SR-522 Data Collected (Omni)

- During October 9th, at 61st AVE
 - ALPR reading: 10228 (WB) and 6666 (EB)
 - Bluetooth reading: 1926 for both directions
 - Detection rate: 11%
- During October 9th, at 170th ST
 - ALPR reading: 9732 (WB) and 8162 (EB)
 - Bluetooth reading: 2124 for both directions
 - Detection rate: 12%
- Matching rate: 70% (1340 out of 1926)

SR-522 October 8th Data

Collected Bluetooth travel times for a 24-hr period

SR-522 Comparison with ALPR WB, Directional (Oct 8th)

20

SR-522 Comparison with ALPR EB, Directional (Oct 8th)

21

SR-522 Comparison with ALPR WB, Omni-Directional (Oct 9th)

<u>2</u>2

SR-522 Comparison with ALPR EB, Omni-Directional (Oct 9th)

 $\overline{=}$

Ζ3

SR-520 Freeway Test

- Much higher speeds
- Longer corridor
- Band-mounted to the inside of overpass
- Mounted next to rear-firing ALPR
- 7 dBi omni-directional antenna

SR-520 Freeway Test Setup

SR-520 (Omni-Directional)

- During February 22nd, at 24th AVE and SR-520
 - 8am to 9am
 - ALPR reading: 1957 (EB)
 - Bluetooth reading: 432 for both directions
- During February 22nd, at 76th AVE and SR-520
 - 8am to 9am
 - ALPR reading: 1368 (EB)
 - Bluetooth reading: 190 for both directions
- Matching rate: 61% (116 out of 190)

Yreka Test Site

- 7.6 miles on I-5
- Very high speeds
- Mount to signs
- 4 devices
- 2 x 7dBi
 - ~100m
- 2 x 9dBi
 - ~150m

Mounting on I-5

Walter

Yreka June 15th-16th

- 7 dBi with GSM closer to Southbound
 385 reads at Anderson, 336 at Walter
- 9 dBi w/out GSM closer to Northbound
 913 reads at Anderson, 336 at Walter
- ~20,000 AADT for corridor

Yreka Omni-Direction

- June 15-16th Anderson Grade
 - 6pm to 6pm (24hrs)
 - Bluetooth reading: 1118 for both directions
- June 15-16th Yreka Walter's Road
 - 6pm to 6pm (24hrs)
 - Bluetooth reading: 336 for both directions
- Matching rate: 68% (228 out of 336)

Discussion

- Installation
- Challenges
- Antennae
- Noise
- Privacy
- Device Development

Installation Details

- Arterials
 - Have been band-mounting to poles
 - Left alone for a week, no vandalism
 - Avoid bus stops and other "tempting" locations
 - Careful of intersection delay
- Freeways
 - Band-mount to overpass railings
 - Warn DOTs and local Police
 - Mount on the inside for safety reasons

Some Observations

- The Bluetooth travel time data collection device produces reasonably accurate travel time measurements.
- High matching rate (60-70%) implies that majority of the Bluetooth devices have been captured by our devices.
- Error % rate varies with distance longer corridors have a lower error rate.
- Bluetooth travel times are generally overestimates there is bias towards slower vehicles.

Potential Rural Challenges

- 5-10% of traffic is detected (at each location)
- 70% of that is matched (obtained travel time)
 - To get one reading every minute, you would need to have at least 120 vehicles per hour
 - Low volume roads may get lower frequency data
- Some bias towards buses
 A lot of devices on one "vehicle"
- Are trucks more likely to have Bluetooth?
- What about rest areas?

Rural Data Frequency Scenario

- Volume? (500 veh/hr)
 - Assume 10% penetration (50 veh/hr)
- Diversion?
 - Assume 50% matching (25 veh/hr)
- Speed?
 - Assume 80% capture (20 veh/hr)
- Is a reading every 3 minutes good enough?
 - Will 10 vehicles in 30 mins be enough to determine the conditions?

Antenna Selection (SR-522)

Data overlap when using both Omni-directional and Directional antennae. Using both at the same time results in 3% more matches

Noise

- WiFi network in area can cause interference
- Other Bluetooth readers also interfere

Time

Red pixels represent collisions (interference). There is little difference between using two devices vs. one at the same location in terms of interference.

Privacy

- Important to maintain trust
- However, no central database
 Cannot tie MAC to individual
- MAC address scrambling
- Deleting expired addresses

- Cost
 - Battery is the most expensive component
 - Increases with features GSM, GPS, Solar
- Component hardening
 - Batteries have been the most fickle
 - Three different types tested
 - Enclosures
 - Steel (durability) vs. Plastic (internal antennae) lid

GPS Functionality

- Synchronization
 - Identical timestamps
- Location
 - Organizing data in space
 - Sensor networks
- Separate Antenna
 - Requires a plastic lid, or a sealed port outside

Real-Time Data Processing

• GSM to communicate via HTTP

About 1 cent per update w/ AT&T

- Push to MySQL server
- Updates every minute, only if data present

Save power and money

			mac	sensorNum	timeString					lat	lon	sensorNum	time
	1	\mathbf{X}	.0021FE9A0A47.	1	.100616033815.			1	\mathbf{X}	.4147.2813.	12235.2269.	2	2010-06-15 16:52:36
	1	$ \mathbf{X} $.0021FE9A0A47.	1	.100616034619.			1	$ \mathbf{X} $.4141.8002.	12238.4414.	1	2010-06-15 17:29:28

UW Drive NET

DRIVE Net | Digital Roadway Interactive Visualization and Evaluation Network

		id	pt1X	pt1Y	pt2X	pt2Y	tt	tod
1	\mathbf{X}	AAA1	47.391097	-122.182572	47.391754	-122.182355	11.02	2010-06-11 17:28:22
Ď	×	AAA2	47.391235	-122.182435	47.391532	-122.182986	11.02	2010-06-11 11:28:22
1	X	1078	47.39113	-122.182574	47.391203	-122.182639	-14.7666666666666	2010-06-14 16:36:47
1	\mathbf{X}	8650	47.39113	-122.182574	47.391203	-122.182639	966.7166666666667	2010-06-12 17:20:03

- 11

Solar Panel Functionality

- Continuous operation
- Trickle charge
- Not very sunny in Seattle
 - Three days w/out solar power

Current Device Incarnation

- Pacific Wireless (Laird) DCE-ANT Box
- 12 dBi Directional antenna in lid (optional)
- 7 and 9 dBi Omni-directional Weatherproof Antenna
- 5-day Li-Po battery

Questions/Comments

- Use scenarios?
- Test edge cases?
- Practical suggestions?