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Problem statement

Our grounding problems came from two different directions

1. Corning Highway Advisory Radio (HAR)

Signal quality sounds poor, issues with
ground during construction

2. Bass Mountain — Mountain top communication site

Insufficient design, did not meet testing
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Problem statement

Our grounding problems came from two different directions

1. Corning Highway Advisory Radio (HAR)

Signal quality sounds poor, issues with
ground during construction

2. Bass Mountain — Mountain top communication site

Insufficient design, did not meet testing
specification

Hope to answer.....

How is grounding applicable?
How does it work?

What can we do to fix it?
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Safety

Required for all industry by the National Fire
Protection Association (NFPA) Article 70, also
Kxnown as the National Electric Code (NEC)
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Safety

* Required for all industry by the National Fire
Protection Association (NFPA) Article 70, also
Kxnown as the National Electric Code (NEC)

* Occupational Safety and Health Administration
(OSHA) requires ground systems for
occupational safety

» Good practice, can save lives



Signhal Ground
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Lightning Protection

* Mountain top communication sites
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Lightning Protection

* Mountain top communication sites
o -

-

« RWIS towers

« CCTV poles




Theory,
Ground Rods,
and Design




Ground Rod Theory

Resistance and Resistivity

Resistance, R = p(L/A) (Q)
p = Resistivity (QQ-m)
L = Length of conducting path (m)
A = Cross sectional area of conductor (m?)




Ground Rod Theory

Accepted model — Concentric earth shells

Resistance of Earth, R = p(L/A) (Q)
p = Resistivity of soil (Q-m)

L = Thickness of shell (m)

A = Surface area of shell (m?)

Radius = Electrode _enath
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Depth =
Electrode
Length = 2
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 MIT Professor derived formula for single rod systems
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 MIT Professor derived formula for single rod systems
» Derived from resistance formula

» Use to find resistance of a single ground rod
R = (p/(211L)) {(In 4L)-1}/r (Q)
L=electrode length (m)
r=electrode radius (m)



Ground Rod Theory

MIT Professor derived formula for single rod systems
Derived from resistance formula

Use to find resistance of a single ground rod
R = (p/(211L)) {(In 4L)-1}/r (Q)
L=electrode length (m)
r=electrode radius (m)

Multiple Rod systems much more complex geometry and require
computer models and/or approximations
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Soil Resistivity

Important Consideration for ground system design

Several factors affect soil resistivity

Soil type

Resistivity (approx), Ohm-centimeaters

SOIL MINIMUM AVERAGE MAXIMLUM
Ashes, cinders, brine, waste 590 2370 7000
Clay, shale, gumbo, loam 340 4060 16,300
Same, with varying proportions of sand and grave| 1020 15,800 135,000
Gravel, sand, stones with little clay or loam 59,000 54,000 458,000




Soil Resistivity

Important Consideration for ground system design
Several factors affect soil resistivity

. Soil type

ii.  Moisture content (and humidity)

Mi}fi:‘ymwz?;;tent Resistivity (Ohm-centimeters)
TOFP SOIL SANDY LOAM
O =10 =107
25 250,000 150,000
5 165,000 43,000
10 53,000 18,500
15 19.000 10,500
20 12,000 6300
30 6400 4200




. Important Consideration for ground system design
. Several factors affect soil resistivity
. Soil type

Soil Resistivity

ii.  Moisture content (and humidity)

iii. pH of sail

THE EFFECT OF SALT* CONTENT ON THE RESISTIVITY OF SOIL
{(Sandy loam, Moisture content, 15% by weight, Temperature, 17°C)

THE EFFECT OF TEMPERATURE ON THE RESISTIVITY
OF S0IL CONTAINING SALT

Added Salt Resistivity (Sandy loam, 20% moisture, Salt 5% of weight of moisture)
(% By weight of moisture) {Ohm-centimeters) Temperature Resistivity
0 10,700 C (Ohm-centimeters)
0.1 1800 20 110
1.0 460 10 142
: 190 1.00 190
10 130 5 112
20 100 -13 1440




iii.
V.

Soil Resistivity

Important Consideration for ground system design

Several factors affect soil resistivity

Soil type

Moisture content

pH of saill
temperature

Temperature Resistivity

C F {Ohm-centimeters)
20 GH 7,200

10 50 9,800

0 32 (water) 13,800

0 32 {ice) 30,000

-5 23 79,000
-15 14 330,000
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Measuring Resistivity

Four-Point Wenner method

Current passed between outermost electrodes
Potential drop measured between inner electrodes
Instrument calculates resistance

F: A A




Measuring resistivity

® Convert to resistivity using the following formula

3 47AR
P= A A

1+ —
JA? +4B>  4A? +4B>
where : A = distance between the electrodes in centimeters

B = electrode depth in centimeters
if A > 20B, the formula becomes::
p= 27AR(with A in cm) Q-cm
p=191.5AR (with A in ft) Q-cm
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Measuring Resistivity

Data collection important
More tests give a better indication of sites average resistivity

Electrode spacing equivalent to the depth of the soil being
measured, spacing electrodes at 10 feet will yield an average
resistivity to a depth of 10 feet

Best to measure dry (worst case)

Field measurements better indicator than soil sample
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More on Resistivity

Soil not homogonous, a layered model is more accurate

The greater the depth the higher the moisture content, or aquifer
Field resistivity measurements a cumulative measurement of layers
Reaching a deep aquifer may sound good, but it may not matter

Rods can lose more charge in top 5-10 feet of ground rod due to
eddy currents



Measuring Resistance

* Three-Point fall-to-potential
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Measuring Resistance

Three-Point fall-to-potential Y
method R

o)
A current is passed between U
ground rod and z electrode .
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Measuring Resistance

Three-Point fall-to-potential
method

A current is passed between
ground rod and z electrode
Potential drop measured

between y electrode x
electrode
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Measuring Resistance

Three-Point fall-to-potential
method

A current is passed between
ground rod and z electrode

Potential drop measured
between y electrode x
electrode

Vary y electrode 30% to 80%
of z electrode distance
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Electorde



Measuring Resistance

Three-Point fall-to-potential
method

A current is passed between
ground rod and z electrode

Potential drop measured
between y electrode x
electrode

Vary y electrode 30% to 80%
of z electrode distance

Instrument calculates
resistance

()
N
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Electrode
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Measuring Resistance

Three-Point fall-to-potential
method

A current is passed between
ground rod and z electrode

Potential drop measured
between y electrode x
electrode

Vary y electrode 30% to 80%
of z electrode distance

Instrument calculates
resistance

Electrode y at 62% good
indicator of ground resistance

()
N

()
N

Z

' patential
| Electrode

Electrode
Being Tested

=—CUrrent
Electorde

g
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Measuring Resistance

« AEMC and Megger are the industry standard for ground resistance
testing
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Measuring Resistance

« AEMC and Megger are the industry standard for ground resistance
testing

« Caltrans District 2 ITS Engineering uses a AEMC 4610

« Instrument displays point-to-point
resistance in ohms

« Can be purchased in a kit with
wire and electrodes

« Instrument can be touchy in highly
resistive soil, troubleshooting guide
can be useful
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Copper/Copper clad ground rods

» Copper/copper clad material
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Multiple ground rods installed in varying configurations can reduce
resistance



Copper/Copper clad ground rods

Copper/copper clad material
diameter important, depth more important
Can be driven or installed horizontally in trench

Multiple ground rods installed in varying configurations can reduce
resistance

Ground rod boxes w/ lid a good idea
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Electrolytic Ground Rods

Hollow copper tube filled w/ electrolytic solution

Boring/drilling required, backfill with bentonite

Reduced soil resistivity by leeching electrolytes into the soil

Vertical and horizontal installations available

Vendors advertising maintenance free products patented since 1968

More costly to install, but much more effective
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Ground Rod Systems

Ground Rod Systems comprised of multiple ground rods
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Ground Rod Systems comprised of multiple ground rods
Often necessary to reduce ground resistance
Using copper/clad or electrolytic rods
Several configurations
Line

Ground Rods (8)




Ground Rod Systems

Ground Rod Systems comprised of multiple ground rods
Often necessary to reduce ground resistance
Using copper/clad or electrolytic rods
Several configurations
. Line

ii Ri ng Distance baliwean rods

0 measured in STRAIGHT LINES

balwean rods, NOT
circumfarence

{
Ground rods Lt K
arranged in ring h



Ground Rod Systems

Ground Rod Systems comprised of multiple ground rods
Often necessary to reduce ground resistance

Using copper/clad or electrolytic rods

Several configurations

. Line
ii. Ring ! 1 1 1A
ii.  Grid
L » % | z
Cmrsn#nli:ﬂilﬂns *_' i& %-
o {5 J IE
» i H'I

9144 m (30 ft.)



iii.
V.

Ground Rod Systems

Ground Rod Systems comprised of multiple ground rods
Often necessary to reduce ground resistance

Using copper/clad or electrolytic rods

Several configurations

Line

Ring

Grid

Complex



Generator

Groiu ndinﬂ Buried Fuel Tank Shelter Ground Ring
Conductor Graunding Conduclar
Extermal Ground
Towar Ground Bus Bar and Bus Bar
Down Conductor Fence Grounding

Conduciar

Ground Radial &

- Guy Wire Ground Ring
Ground Radial & Grounding EBonding Conductors
Ground Radial C Conductor

Grounding Electrodes
(Ground Roda)

Tower Ground
Ring
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Ground Rods

Generally its best to space the rods @ 2x the drive depth

Rods should be connected together using a #1/0 or
larger ground wire

All rod/wire connections should be exothermically
welded

Other grounding system options available depending
upon application
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Computer modeling software
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Design Tools

Nomograph’s
.  Readily available
ii. Effective

Computer modeling software
I. Costly
ii. Highly effective if input data is accurate

On-line calculators
. Available on-line
ii. Reliable?



Grounding Nomograph
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1. Belect required resistance on R scale
Select apparent resistivity on P scale

. Lay straightedge on R and P scale, and allow to intersect with K scale
. Mark K scale peint

. Point on D scale will be the rod depth required for resistance on R scale

®  1960-2004 CHAUVN AMOLE, INC. 0.4 AEMC® Inshiuments

®

Operator Name:
Date:

Site:

City:

State:

. Lay straightedge on K scalz point and DIA scale, and allow to intersect with D scale

Geounding Nomograph jodli Rew 02 CAUS

Rl 1M ETRLMERTS Techmcal Assistanca (BD0) 343-1381

WWWRLABTC. COMm
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Single Rod nomograph - Motorola R56
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Highway Advisory Radio

e Caltrans District 2 has 16 HAR systems located
throughout the district, supplied to us by Highway
Information Systems (HIS)

» Used frequently by TMC operators



Highway Advisory Radio

e Caltrans District 2 has 16 HAR systems located
throughout the district, supplied to us by Highway
Information Systems (HIS)

« Used frequently by TMC operators

« Travelers rely on HAR system for critical traveler
information
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HAR Issues

* An inherent lack of standardization
« Multiple revisions in the field
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HAR Issues

* An inherent lack of standardization
« Multiple revisions in the field
« Differents sites installed by different contractors

AbramslLake Corning
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HAR Issues

* An inherent lack of standardization

« Multiple revisions in the field

Differents sites installed by different contractors
Makes troubleshooting difficult

AbramslLake Corning

. Weaverville

— “"7.7

WaItLers Rd

o,
——




HAR Issues

* An inherent lack of standardization
« Multiple revisions in the field
Differents sites installed by different contractors
Makes troubleshooting difficult

« Some sites sound different from other sites
AbramslLake Corning

averville

We N WaltersRd
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HAR Antenna

« HAR antenna is a vertical monopole
* Model from electromagnetic image theory

Lywave

| T antennd

-:cm-.nc'ring
................ : Surfoce

* Appears to be a half wave dipole
» In this case the conducting surface is the ground
« A better ground means better radiation efficiency






Surface Wave Propagation

« At low frequencies vertical monopoles may induce
surface waves (ground waves)

* The existence of surface waves still debated 100 years
after being proposed by Sommerfield and Zenneck



Surface Wave Propagation

« At low frequencies vertical monopoles may induce
surface waves (ground waves)

* The existence of surface waves still debated 100 years
after being proposed by Sommerfield and Zenneck

 Surface wave model for vertical monopoles is a radial
cylinder
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Surface Wave Propagation

* Dipole model uses spherical shell, signal strength drops
off at 1/r?

H,=M, 3 Flot +1
= Feacty
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@ 0,=0 | aurface

T R A R
éﬁ?ﬁﬂ&ﬁﬁ’ﬂ&ﬁgﬂ%ﬁ&ﬂﬁﬂ&ﬁﬁﬁﬁ&ﬁ?
& prre jﬁf A
% = ﬁ?ﬂ&ﬂﬁﬁéﬁﬁ¢ﬁﬁﬁ¢ﬁﬁ?
. L e e T R s

Sectional Elevation

Plan



Surface Wave Propagation

* Dipole model uses spherical shell, signal strength drops

off at 1/r?

« Cylindrical model implies a decay of 1/r, math tells us

1/r172
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Surface Wave Propagation

* Dipole model uses spherical shell, signal strength drops

off at 1/r2

« Cylindrical model implies a decay of 1/r, math tells us

1/r172

« This is important, if true we can increase our
coverage area without deviating from FCC spec
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- HAR ground systems in District 2
I. Radial
ii. Single Rod
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Radial Ground

« Composed of #12
bare copper wire laid
symmetrically around
antenna, length of
conductor varies from
site to site, generally
about 30 feet

« Can be costly due to
right-of-way issues
 Most HAR ground

systems in the District
are of the radial type
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Ve Rodlz antenna
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Ve Rodlz antenna
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Triad Ground

« Composed of three 20 foot electrolytic ground rods
spaced symmetrically around the antenna, 20 feet apart

« #1/0 bare copper ground wire exothermically welded to
the rod

« Each rod has a dedicated wire run to an antenna ground
bus bar



Triad Ground

Composed of three 20 foot electrolytic ground rods
spaced symmetrically around the antenna, 20 feet apart

#1/0 bare copper ground wire exothermically welded to
the rod

Each rod has a dedicated wire run to an antenna ground
bus bar

Proposed as a solution to right-of-way issues
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Further Study

Currently under investigation in District 2 is the relationship
between the ground system and surface wave propagation
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Further Study

« Whether surface waves play a roll at this time is unclear,
but we do know, according to measured data, the ground
system does affect signal strength, and the strength decays
differently for different grounding systems

AbramsLakeHAR
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Mountain-Top Sites

. District 2 has three mountain-top sites and growing,

Hill900
Bass Mountain

Sugarloaf

- The sites are used as data aggregatlon points for our pomt-

~ to- pomt microwave network
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Lightning Protection

Ground system important at Mountain-top sites

Protects sensitive equipment from transient voltages
produced by lightning disturbances

Provides direct path to ground dissipating energy in the
Earth

Low ground resistance is the key

Recommend 1-ohm ground resistance for high strike
density areas
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Discharge Theory

Lightning-Rod/Tower attracts charge from surrounding
area with its strong electric field

Lightning-Rod/Tower dissipates charge through the
ground system to the Earth

Lowers potential for cloud-to-ground strike

Tower now appears “electrically equal” to the area
around it
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Problem

- Contract Awarded 12/28/07 System installed 9/15/08
- Tested by District 2 ITS Engineering 9/16/08, result 13 Q

- Tested by Contractor
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Problem

- Contract Awarded 12/28/07 System installed 9/15/08
- Tested by District 2 ITS Engineering 9/16/08, result 13 Q

- Tested by Contractor
10/03/08, result 7 Q
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- Specification required a 1 Q
measurement to pass

- What happened?
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« Ground system designed around a borrowed spec and
not thoroughly researched

* No soil resistivity measurement taken before design



What happened

Ground system designed around a borrowed spec and
not thoroughly researched

No soil resistivity measurement taken before design

Not built strictly to plan during construction









Solution

« Soil resistivity measured at site

« Several ground rod system configurations were looked at
to build around existing configuration (impractical to
remove existing system)

See next two slides for grid and complex configurations
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Solution

« Soil resistivity measured at site

« Several ground rod system configurations were looked at
to build around existing configuration (impractical to
remove existing system)

« Theoretical ground system resistance calculated using
nomograph’s

See next three slides
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« Complex ground system calculation
« Subsystems modeled as a parallel resistance
 For Bass Mountain

1/Riotal = 1/Rpyigingt 1/R
Ri..,.=8Q

tower

total



Solution

« Soil resistivity measured at site

« Several ground rod system configurations were looked at
to build around existing configuration (impractical to
remove existing system)

« Theoretical ground system resistance calculated using
nomograph’s
Result — approximately 8 Q
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Several ground rod system configurations were looked at
to build around existing configuration (impractical to
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nomograph’s
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Solution

Soil resistivity measured at site

Several ground rod system configurations were looked at
to build around existing configuration (impractical to
remove existing system)

Theoretical ground system resistance calculated using
nomograph’s

The most practical, cost effective configuration selected

Contract Change Order initiated



Bass Mountain Ground System

Complex ground configuration — Eight-rod ring around
tower, connected to building ground
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Ground System Components

Sixteen 8'x%4” copper-clad ground rods, top of rod 18”
below grade

10" ground rod boxes
#1/0 bare copper ground wire, 18" below grade

Exothermic welds, important to know the layout and
specify the molds

Exothermic weld lugs for a mechanical connection to
tower

Fence clamp
Exterior ground bus bar



TR
¥

) Y
BAPINE













Ground System Components

- Interior ground bus bar

- #1/0 bare copper ground connected to exterior ground bus
bar



Ground System Components

- Interior ground bus bar

- #1/0 bare copper ground connected to exterior ground bus
bar

- #1/0 insulated copper ground wire, run the length of the
cable runway



Ground System Components

- Interior ground bus bar

- #1/0 bare copper ground connected to exterior ground bus
bar

- #1/0 insulated copper ground wire, run the length of the
cable runway

- #8 insulated copper ground wire pigtailed above each rack
location



Ground System Components

- Interior ground bus bar

- #1/0 bare copper ground connected to exterior ground bus
bar

- #1/0 insulated copper ground wire, run the length of the
cable runway

- #8 insulated copper ground wire pigtailed above each rack
location

- Rack ground connectors



Ground System Components

- Interior ground bus bar

- #1/0 bare copper ground connected to exterior ground bus
bar

- #1/0 insulated copper ground wire, run the length of the
cable runway

- #8 insulated copper ground wire pigtailed above each rack
location

- Rack ground connectors

- Tower ground bus bar



Ground System Components

- Interior ground bus bar

- #1/0 bare copper ground connected to exterior ground bus
bar

- #1/0 insulated copper ground wire, run the length of the
cable runway

- #8 insulated copper ground wire pigtailed above each rack
location

- Rack ground connectors

- Tower ground bus bar

- Coaxial cable ground kits



Ground System Components

- Interior ground bus bar

- #1/0 bare copper ground connected to exterior ground bus
bar

- #1/0 insulated copper ground wire, run the length of the
cable runway

- #8 insulated copper ground wire pigtailed above each rack
location

- Rack ground connectors

- Tower ground bus bar

- Coaxial cable ground kits

- lce bridge ground connection



Ground System Components

- Interior ground bus bar

- #1/0 bare copper ground connected to exterior ground bus
bar

- #1/0 insulated copper ground wire, run the length of the
cable runway

- #8 insulated copper ground wire pigtailed above each rack
location

- Rack ground connectors

- Tower ground bus bar

- Coaxial cable ground kits

- lce bridge ground connection

. Service ground connection



Ground System Components

- Interior ground bus bar
- #1/0 bare copper ground connected to exterior ground bus
bar

- #1/0 insulated copper ground wire, run the length of the
cable runway

- #8 insulated copper ground wire pigtailed above each rack
location

- Rack ground connectors

- Tower ground bus bar

- Coaxial cable ground kits

- lce bridge ground connection

. Service ground connection

- Future generator ground connection



Bass Mountain cable entry
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Additional Info

Tower ground connection, many tower manufacturers
don’t recommend exothermic welding on the tower base

Minimize exothermic welds, each weld introduces
resistance to the system

Contractor used incorrect and/or unnecessary
exothermic weld molds

Everything metallic should be grounded at the site
including guy wires, fence, generator, ete.

Utility connection should be grounded
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Ground Results

« Contractor test results after redesigned ground
— Date 02-10-09
— Weather light to moderate rain

Distance from Ground vs Ground Resistance

14 -

0 20 4‘0 E;O E;O | 1(‘)0‘ | 1éO
feet
« Test not performed correctly
— X-Z distance not large enough

— X-Z ran parallel to building ground ring, should be
perpendicular



Ground Results

« District 2 ITS Engineering
test results after
redesigned ground
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L essons Learned

Soil resistivity measurements are a key component to
any ground system design

Utilization of the proper design tools

Good construction support

Tighter specification on exothermic welds

Tighter testing specification

— Theoretical ground resistance value + margin of error
— Where to test, and X — Z distance

— Test in dry conditions, if possible



Grounding Recap

Obtaining soil resistivity measurements is the key to
designing an effective ground system

Design ground system for worse case
Utilize design tools, nomograph’s, software, etc
For vertical antenna’s, ground system very important

For lightning protection, ground system important to
protect sensitive equipment from lightning induced
transients






